1
|
den Hollander B, Brands MM, de Boer L, Haaxma CA, Lengyel A, van Essen P, Peters G, Kwast HJT, Klein WM, Coene KLM, Lefeber DJ, van Karnebeek CDM. Oral sialic acid supplementation in NANS-CDG: Results of a single center, open-label, observational pilot study. J Inherit Metab Dis 2023; 46:956-971. [PMID: 37340906 DOI: 10.1002/jimd.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
NANS-CDG is a congenital disorder of glycosylation (CDG) caused by biallelic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. It presents with intellectual developmental disorder (IDD), skeletal dysplasia, neurologic impairment, and gastrointestinal dysfunction. Some patients suffer progressive intellectual neurologic deterioration (PIND), emphasizing the need for a therapy. In a previous study, sialic acid supplementation in knockout nansa zebrafish partially rescued skeletal abnormalities. Here, we performed the first in-human pre- and postnatal sialic-acid study in NANS-CDG. In this open-label observational study, 5 patients with NANS-CDG (range 0-28 years) were treated with oral sialic acid for 15 months. The primary outcome was safety. Secondary outcomes were psychomotor/cognitive testing, height and weight, seizure control, bone health, gastrointestinal symptoms, and biochemical and hematological parameters. Sialic acid was well tolerated. In postnatally treated patients, there was no significant improvement. For the prenatally treated patient, psychomotor and neurologic development was better than two other genotypically identical patients (one treated postnatally, one untreated). The effect of sialic acid treatment may depend on the timing, with prenatal treatment potentially benefiting neurodevelopmental outcomes. Evidence is limited, however, and longer-term follow-up in a larger number of prenatally treated patients is required.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marion M Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lonneke de Boer
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Radboud University Medical Center, Department of Pediatric Neurology, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Charlotte A Haaxma
- Radboud University Medical Center, Department of Pediatric Neurology, Amalia Children's Hospital, Nijmegen, The Netherlands
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Anna Lengyel
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Peter van Essen
- Radboud University Medical Center, Department of Pediatric Neurology, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Gera Peters
- Department of Rehabilitation Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hanneke J T Kwast
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn M Klein
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien L M Coene
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Dirk J Lefeber
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Clara D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Bell A, Severi E, Owen CD, Latousakis D, Juge N. Biochemical and structural basis of sialic acid utilization by gut microbes. J Biol Chem 2023; 299:102989. [PMID: 36758803 PMCID: PMC10017367 DOI: 10.1016/j.jbc.2023.102989] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The human gastrointestinal (GI) tract harbors diverse microbial communities collectively known as the gut microbiota that exert a profound impact on human health and disease. The repartition and availability of sialic acid derivatives in the gut have a significant impact on the modulation of gut microbes and host susceptibility to infection and inflammation. Although N-acetylneuraminic acid (Neu5Ac) is the main form of sialic acids in humans, the sialic acid family regroups more than 50 structurally and chemically distinct modified derivatives. In the GI tract, sialic acids are found in the terminal location of mucin glycan chains constituting the mucus layer and also come from human milk oligosaccharides in the infant gut or from meat-based foods in adults. The repartition of sialic acid in the GI tract influences the gut microbiota composition and pathogen colonization. In this review, we provide an update on the mechanisms underpinning sialic acid utilization by gut microbes, focusing on sialidases, transporters, and metabolic enzymes.
Collapse
Affiliation(s)
- Andrew Bell
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom
| | - Emmanuele Severi
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - C David Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Dimitrios Latousakis
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich, United Kingdom.
| |
Collapse
|
3
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
4
|
Milk Formula Diet Alters Bacterial and Host Protein Profile in Comparison to Human Milk Diet in Neonatal Piglet Model. Nutrients 2021; 13:nu13113718. [PMID: 34835974 PMCID: PMC8618976 DOI: 10.3390/nu13113718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
The metaproteome profiling of cecal contents collected from neonatal piglets fed pasteurized human milk (HM) or a dairy-based infant formula (MF) from postnatal day (PND) 2 to 21 were assessed. At PND 21, a subset of piglets from each group (n = 11/group) were euthanized, and cecal contents were collected for further metaproteome analysis. Cecal microbiota composition showed predominantly more Firmicutes phyla and Lachnospiraceae family in the lumen of cecum of HM-fed piglets in comparison to the MF-fed group. Ruminococcus gnavus was the most abundant species from the Firmicutes phyla in the cecal contents of the HM-fed piglets at 21 days of age. A greater number of expressed proteins were identified in the cecal contents of the HM-fed piglets relative to the MF-fed piglets. Greater abundances of proteins potentially expressed by Bacteroides spp. such as glycoside enzymes were noted in the cecal lumen of HM-fed piglets relative to the MF. Additionally, lyases associated with Lachnospiraceae family were abundant in the cecum of the HM group relative to the MF group. Overall, our findings indicate that neonatal diet impacts the gut bacterial taxa and microbial proteins prior to weaning. The metaproteomics data were deposited into PRIDE, PXD025432 and 10.6019/PXD025432.
Collapse
|
5
|
Severi E, Rudden M, Bell A, Palmer T, Juge N, Thomas GH. Multiple evolutionary origins reflect the importance of sialic acid transporters in the colonization potential of bacterial pathogens and commensals. Microb Genom 2021; 7. [PMID: 34184979 PMCID: PMC8461474 DOI: 10.1099/mgen.0.000614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Located at the tip of cell surface glycoconjugates, sialic acids are at the forefront of host-microbe interactions and, being easily liberated by sialidase enzymes, are used as metabolites by numerous bacteria, particularly by pathogens and commensals living on or near diverse mucosal surfaces. These bacteria rely on specific transporters for the acquisition of host-derived sialic acids. Here, we present the first comprehensive genomic and phylogenetic analysis of bacterial sialic acid transporters, leading to the identification of multiple new families and subfamilies. Our phylogenetic analysis suggests that sialic acid-specific transport has evolved independently at least eight times during the evolution of bacteria, from within four of the major families/superfamilies of bacterial transporters, and we propose a robust classification scheme to bring together a myriad of different nomenclatures that exist to date. The new transporters discovered occur in diverse bacteria, including Spirochaetes, Bacteroidetes, Planctomycetes and Verrucomicrobia, many of which are species that have not been previously recognized to have sialometabolic capacities. Two subfamilies of transporters stand out in being fused to the sialic acid mutarotase enzyme, NanM, and these transporter fusions are enriched in bacteria present in gut microbial communities. Our analysis supports the increasing experimental evidence that competition for host-derived sialic acid is a key phenotype for successful colonization of complex mucosal microbiomes, such that a strong evolutionary selection has occurred for the emergence of sialic acid specificity within existing transporter architectures.
Collapse
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, York, UK.,Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Andrew Bell
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Tracy Palmer
- Microbes in Health and Disease, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | |
Collapse
|