1
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
3
|
Bai G, Zhang M. Inhibitory postsynaptic density from the lens of phase separation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac003. [PMID: 38596704 PMCID: PMC10913824 DOI: 10.1093/oons/kvac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 04/11/2024]
Abstract
To faithfully transmit and decode signals released from presynaptic termini, postsynaptic compartments of neuronal synapses deploy hundreds of various proteins. In addition to distinct sets of proteins, excitatory and inhibitory postsynaptic apparatuses display very different organization features and regulatory properties. Decades of extensive studies have generated a wealth of knowledge on the molecular composition, assembly architecture and activity-dependent regulatory mechanisms of excitatory postsynaptic compartments. In comparison, our understanding of the inhibitory postsynaptic apparatus trails behind. Recent studies have demonstrated that phase separation is a new paradigm underlying the formation and plasticity of both excitatory and inhibitory postsynaptic molecular assemblies. In this review, we discuss molecular composition, organizational and regulatory features of inhibitory postsynaptic densities through the lens of the phase separation concept and in comparison with the excitatory postsynaptic densities.
Collapse
Affiliation(s)
- Guanhua Bai
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
| |
Collapse
|
4
|
Ru FX, Kong F, Ren CY, He YS, Xia SY, Li YN, Liang YP, Feng JJ, Wei ZY, Chen JH. Repeated Winning and Losing Experiences in Chronic Social Conflicts Are Linked to RNA Editing Pattern Difference. Front Psychiatry 2022; 13:896794. [PMID: 35664469 PMCID: PMC9161819 DOI: 10.3389/fpsyt.2022.896794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.
Collapse
Affiliation(s)
- Fu-Xia Ru
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Fanzhi Kong
- Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jun-Jie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| |
Collapse
|