1
|
Finn LM, Cummer R, Castagner B, Keller BG. Allosterically switchable network orients β-flap in Clostridioides difficile toxins. Proc Natl Acad Sci U S A 2025; 122:e2419263122. [PMID: 40172960 PMCID: PMC12002228 DOI: 10.1073/pnas.2419263122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
Allosteric proteins exhibit a functional response upon ligand binding far from the active site. Clostridioides difficile toxins use allosteric binding by the endogenous cofactor myo-inositol hexakisphosphate to orchestrate self-cleavage from within the target cell. This binding event induces a conformational shift, primarily effecting a lever-like β-flap region, with two known orientations. We uncovered a mechanism for this allosteric transition using extensive atomistic molecular dynamics simulations and computational and experimental mutagenesis. The mechanism relies on a switchable interaction network. The most prominent interaction pair is K600-E743, with K600 interactions explaining ∼70% of the allosteric effect. Rather than gradually morphing between two end states, the interaction network adopts two mutually exclusive configurations in the active and inactive state. Similar switchable networks may explain allostery more broadly. This mechanism in particular could aid in drug development targeting the C. difficile toxins autoproteolysis.
Collapse
Affiliation(s)
- Lauren M. Finn
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin14195, Germany
| | - Rebecca Cummer
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Bettina G. Keller
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin14195, Germany
| |
Collapse
|
2
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
3
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
4
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
Kapp-Joswig JO, Keller BG. CommonNNClustering─A Python Package for Generic Common-Nearest-Neighbor Clustering. J Chem Inf Model 2023; 63:1093-1098. [PMID: 36744824 DOI: 10.1021/acs.jcim.2c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Density-based clustering procedures are widely used in a variety of data science applications. Their advantage lies in the capability to find arbitrarily shaped and sized clusters and robustness against outliers. In particular, they proved effective in the analysis of molecular dynamics simulations, where they serve to identify relevant, low-energetic molecular conformations. As such, they can provide a convenient basis for the construction of kinetic (core-set) Markov-state models. Here we present the open-source Python project CommonNNClustering, which provides an easy-to-use and efficient reimplementation of the common-nearest-neighbor (CommonNN) method. The package provides functionalities for hierarchical clustering and an evaluation of the results. We put our emphasis on a generic API design to keep the implementation flexible and open for customization.
Collapse
Affiliation(s)
- Jan-Oliver Kapp-Joswig
- Department of Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany
| | - Bettina G Keller
- Department of Theoretical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany
| |
Collapse
|
6
|
Wenz MT, Bertazzon M, Sticht J, Aleksić S, Gjorgjevikj D, Freund C, Keller BG. Target Recognition in Tandem WW Domains: Complex Structures for Parallel and Antiparallel Ligand Orientation in h-FBP21 Tandem WW. J Chem Inf Model 2022; 62:6586-6601. [PMID: 35347992 DOI: 10.1021/acs.jcim.1c01426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein-protein interactions often rely on specialized recognition domains, such as WW domains, which bind to specific proline-rich sequences. The specificity of these protein-protein interactions can be increased by tandem repeats, i.e., two WW domains connected by a linker. With a flexible linker, the WW domains can move freely with respect to each other. Additionally, the tandem WW domains can bind in two different orientations to their target sequences. This makes the elucidation of complex structures of tandem WW domains extremely challenging. Here, we identify and characterize two complex structures of the tandem WW domain of human formin-binding protein 21 and a peptide sequence from its natural binding partner, the core-splicing protein SmB/B'. The two structures differ in the ligand orientation and, consequently, also in the relative orientation of the two WW domains. We analyze and probe the interactions in the complexes by molecular simulations and NMR experiments. The workflow to identify the complex structures uses molecular simulations, density-based clustering, and peptide docking. It is designed to systematically generate possible complex structures for repeats of recognition domains. These structures will help us to understand the synergistic and multivalency effects that generate the astonishing versatility and specificity of protein-protein interactions.
Collapse
Affiliation(s)
- Marius T Wenz
- Institute for Chemistry and Biochemistry, Molecular Dynamics Group, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Miriam Bertazzon
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Jana Sticht
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany.,Core Facility BioSupraMol, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Stevan Aleksić
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Daniela Gjorgjevikj
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Bettina G Keller
- Institute for Chemistry and Biochemistry, Molecular Dynamics Group, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| |
Collapse
|
7
|
Wehrhan L, Leppkes J, Dimos N, Loll B, Koksch B, Keller BG. Water Network in the Binding Pocket of Fluorinated BPTI-Trypsin Complexes─Insights from Simulation and Experiment. J Phys Chem B 2022; 126:9985-9999. [PMID: 36409613 DOI: 10.1021/acs.jpcb.2c05496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural waters in the S1 binding pocket of β-trypsin are critical for the stabilization of the complex of β-trypsin with its inhibitor bovine pancreatic trypsin inhibitor (BPTI). The inhibitor strength of BPTI can be modulated by replacing the critical lysine residue at the P1 position by non-natural amino acids. We study BPTI variants in which the critical Lys15 in BPTI has been replaced by α-aminobutyric acid (Abu) and its fluorinated derivatives monofluoroethylglycine (MfeGly), difluoroethylglycine (DfeGly), and trifluoroethylglycine (TfeGly). We investigate the hypothesis that additional water molecules in the binding pocket can form specific noncovalent interactions with the fluorinated side chains and thereby act as an extension of the inhibitors. We report potentials of mean force (PMF) of the unbinding process for all four complexes and enzyme activity inhibition assays. Additionally, we report the protein crystal structure of the Lys15MfeGly-BPTI-β-trypsin complex (pdb: 7PH1). Both experimental and computational data show a stepwise increase in inhibitor strength with increasing fluorination of the Abu side chain. The PMF additionally shows a minimum for the encounter complex and an intermediate state just before the bound state. In the bound state, the computational analysis of the structure and dynamics of the water molecules in the S1 pocket shows a highly dynamic network of water molecules that does not indicate a rigidification or stabilizing trend in regard to energetic properties that could explain the increase in inhibitor strength. The analysis of the energy and the entropy of the water molecules in the S1 binding pocket using grid inhomogeneous solvation theory confirms this result. Overall, fluorination systematically changes the binding affinity, but the effect cannot be explained by a persistent water network in the binding pocket. Other effects, such as the hydrophobicity of fluorinated amino acids and the stability of the encounter complex as well as the additional minimum in the potential of mean force in the bound state, likely influence the affinity more directly.
Collapse
Affiliation(s)
- Leon Wehrhan
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, Berlin14195, Germany
| | - Jakob Leppkes
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 20, Berlin14195, Germany
| | - Nicole Dimos
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, Berlin14195, Germany
| | - Bernhard Loll
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 6, Berlin14195, Germany
| | - Beate Koksch
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 20, Berlin14195, Germany
| | - Bettina G Keller
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, Berlin14195, Germany
| |
Collapse
|
8
|
Zhang H, Modenutti C, Nekkanti YPK, Denis M, Bermejo IA, Lefèbre J, Che K, Kim D, Kagelmacher M, Kurzbach D, Nazaré M, Rademacher C. Identification of the Allosteric Binding Site for Thiazolopyrimidine on the C-Type Lectin Langerin. ACS Chem Biol 2022; 17:2728-2733. [PMID: 36153965 PMCID: PMC9594047 DOI: 10.1021/acschembio.2c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Langerin is a mammalian C-type lectin expressed on Langerhans cells in the skin. As an innate immune cell receptor, Langerin is involved in coordinating innate and adaptive immune responses against various incoming threats. We have previously reported a series of thiazolopyrimidines as murine Langerin ligands. Prompted by the observation that its human homologue exhibits different binding specificities for these small molecules, we report here our investigations to define their exact binding site. By using structural comparison and molecular dynamics simulations, we showed that the nonconserved short loops have a high degree of conformational flexibility between the human and murine homologues. Sequence analysis and mutational studies indicated that a pair of residues are essential for the recognition of the thiazolopyrimidines. Taking solvent paramagnetic relaxation enhancement NMR studies together with a series of peptides occupying the same site, we could define the cleft between the short and long loops as the allosteric binding site for these aromatic heterocycles.
Collapse
Affiliation(s)
- Hengxi Zhang
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Biology, Chemistry, and Pharmacy, Freie
Universität Berlin, Takustrasse 3, 14195 Berlin, Germany,Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria,Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - Carlos Modenutti
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Departamento
de Química Biológica, Facultad
de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina,Instituto
de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EHA Buenos
Aires, Argentina
| | - Yelha Phani Kumar Nekkanti
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany,Berlin
Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Maxime Denis
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Iris A. Bermejo
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jonathan Lefèbre
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria,Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - Kateryna Che
- Faculty
of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria,Doctoral
School in Chemistry (DoSChem), University
of Vienna, Währingerstr. 42, 1090 Vienna, Austria
| | - Dongyoon Kim
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marten Kagelmacher
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Biology, Chemistry, and Pharmacy, Freie
Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Marc Nazaré
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany,Berlin
Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Christoph Rademacher
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Biology, Chemistry, and Pharmacy, Freie
Universität Berlin, Takustrasse 3, 14195 Berlin, Germany,Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria,
| |
Collapse
|
9
|
Buck M. Letting go: Deep computational modeling insights into pH-dependent calcium affinity. J Biol Chem 2021; 297:100974. [PMID: 34280436 PMCID: PMC8350533 DOI: 10.1016/j.jbc.2021.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Calcium and other cofactors can feature as key additions to a molecular interface, to the extent that the cofactor is completely buried in the bound state. How can such an interaction be regulated then? The answer: By facilitating a switch through an allosteric network. Although a number of unbinding mechanisms are being characterized, an extensive computational study by Joswig et al. reveals a detailed model for the pattern recognition receptor langerin.
Collapse
Affiliation(s)
- Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|