1
|
Asido M, Lamm GHU, Lienert J, La Greca M, Kaur J, Mayer A, Glaubitz C, Heberle J, Schlesinger R, Kovalev K, Wachtveitl J. A Detailed View on the (Re)isomerization Dynamics in Microbial Rhodopsins Using Complementary Near-UV and IR Readouts. Angew Chem Int Ed Engl 2025; 64:e202416742. [PMID: 39523487 PMCID: PMC11753611 DOI: 10.1002/anie.202416742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Isomerization is a key process in many (bio)chemical systems. In microbial rhodopsins, the photoinduced isomerization of the all-trans retinal to the 13-cis isomer initiates a cascade of structural changes of the protein. The interplay between these changes and the thermal relaxation of the isomerized retinal is one of the crucial determinants for rhodopsin functionality. It is therefore important to probe this dynamic interplay with chromophore specific markers that combine gapless temporal observation with spectral sensitivity. Here we utilize the near-UV and mid-IR fingerprint region in the framework of a systematic (time-resolved) spectroscopic study on H+- (HsBR, (G)PR), Na+- (KR2, ErNaR) and Cl--(NmHR) pumps. We demonstrate that the near-UV region is an excellent probe for retinal configuration and-being sensitive to the electrostatic environment of retinal-even transient ion binding, which allows us to pinpoint protein specific mechanistic nuances and chromophore-charge interactions. The combination of the near-UV and mid-IR fingerprint region hence provides a spectroscopic analysis tool that allows a detailed, precise and temporally fully resolved description of retinal configurations during all stages of the photocycle.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
- Present Adress: Department of Chemistry Massachusetts Institute of Technology77 Massachusetts Ave, 2–014CambridgeMassachusetts02139USA
| | - Gerrit H. U. Lamm
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| | - Jonas Lienert
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| | - Mariafrancesca La Greca
- Department of PhysicsGenetic BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Anne Mayer
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Ramona Schlesinger
- Department of PhysicsGenetic BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Kirill Kovalev
- European Molecular Biology Laboratory Hamburg, EMBL Hamburgc/o DESY, Notkestraße 8522607HamburgGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| |
Collapse
|
2
|
Kondo K, Ohtake R, Nakano S, Terashima M, Kojima H, Fukui M, Demura M, Kikukawa T, Tsukamoto T. Contribution of Proteorhodopsin to Light-Dependent Biological Responses in Hymenobacter nivis P3 T Isolated from Red Snow in Antarctica. Biochemistry 2024; 63:2257-2265. [PMID: 39196915 DOI: 10.1021/acs.biochem.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Proteorhodopsin (PR) is a major family of microbial rhodopsins that function as light-driven outward proton pumps. PR is now widely recognized for its ecological importance as a molecule responsible for solar energy flow in various ecosystems on the earth. However, few concrete examples of the actual use of light by natural microorganisms via PR have been demonstrated experimentally. This study reveals one example of that in a cryophilic bacterium Hymenobacter nivis P3T isolated from red snow in Antarctica. The results demonstrate light-dependent biochemical and biological responses in H. nivis cells, such as the proton pump activity of H. nivis PR (HnPR), which leads to the production of proton motive force, cellular ATP production, and cell growth. In addition, the results of this study demonstrate the photochemical properties of a PR, namely, HnPR, in the membrane of a natural host bacterium. The photocycle of HnPR was much faster than other PRs even at 5 °C, indicating that the proton pump function of HnPR has adapted to the low-temperature environment of Antarctica. Although it is well-known that PR helps natural host microorganisms to use light energy, this study provides another concrete example for understanding the biological role of PR by demonstrating the link between the molecular functions of PR and the light-dependent biochemical and biological responses of a PR-bearing host.
Collapse
Affiliation(s)
- Kaori Kondo
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryouhei Ohtake
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shunsuke Nakano
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mia Terashima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Makoto Demura
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Tsukamoto
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Hamada C, Murabe K, Tsukamoto T, Kikukawa T. Direct detection of the chloride release and uptake reactions of Natronomonas pharaonis halorhodopsin. J Biol Chem 2024; 300:107712. [PMID: 39178949 PMCID: PMC11421326 DOI: 10.1016/j.jbc.2024.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Membrane transport proteins undergo multistep conformational changes to fulfill the transport of substrates across biological membranes. Substrate release and uptake are the most important events of these multistep reactions that accompany significant conformational changes. Thus, their relevant structural intermediates should be identified to better understand the molecular mechanism. However, their identifications have not been achieved for most transporters due to the difficulty of detecting the intermediates. Herein, we report the success of these identifications for a light-driven chloride transporter halorhodopsin (HR). We compared the time course of two flash-induced signals during a single transport cycle. One is a potential change of Cl--selective membrane, which enabled us to detect tiny Cl--concentration changes due to the Cl- release and the subsequent Cl--uptake reactions by HR. The other is the absorbance change of HR reflecting the sequential formations and decays of structural intermediates. Their comparison revealed not only the intermediates associated with the key reactions but also the presence of two additional Cl--binding sites on the Cl--transport pathways. The subsequent mutation studies identified one of the sites locating the protein surface on the releasing side. Thus, this determination also clarified the Cl--transport pathway from the initial binding site until the release to the medium.
Collapse
Affiliation(s)
- Chihaya Hamada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Keisuke Murabe
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Podoliak E, Lamm GHU, Marin E, Schellbach AV, Fedotov DA, Stetsenko A, Asido M, Maliar N, Bourenkov G, Balandin T, Baeken C, Astashkin R, Schneider TR, Bateman A, Wachtveitl J, Schapiro I, Busskamp V, Guskov A, Gordeliy V, Alekseev A, Kovalev K. A subgroup of light-driven sodium pumps with an additional Schiff base counterion. Nat Commun 2024; 15:3119. [PMID: 38600129 PMCID: PMC11006869 DOI: 10.1038/s41467-024-47469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base. We thoroughly characterize a member of this subgroup, namely the protein ErNaR from Erythrobacter sp. HL-111 and show that the additional glutamic acid results in almost complete loss of pH sensitivity for sodium-pumping activity, which is in contrast to previously studied NaRs. ErNaR is capable of transporting sodium efficiently even at acidic pH levels. X-ray crystallography and single particle cryo-electron microscopy reveal that the additional glutamic acid residue mediates the connection between the other two Schiff base counterions and strongly interacts with the aspartic acid of the characteristic NDQ motif. Hence, it reduces its pKa. Our findings shed light on a subgroup of NaRs and might serve as a basis for their rational optimization for optogenetics.
Collapse
Affiliation(s)
- E Podoliak
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - G H U Lamm
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - E Marin
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - A V Schellbach
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - D A Fedotov
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - A Stetsenko
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - M Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - N Maliar
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - G Bourenkov
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, 22607, Hamburg, Germany
| | - T Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - C Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - R Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - T R Schneider
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, 22607, Hamburg, Germany
| | - A Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - J Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - I Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - V Busskamp
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - A Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - V Gordeliy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - A Alekseev
- University Medical Center Göttingen, Institute for Auditory Neuroscience and InnerEarLab, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - K Kovalev
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, 22607, Hamburg, Germany.
| |
Collapse
|
5
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Configurational Changes of Retinal Schiff Base during Membrane Na + Transport by a Sodium Pumping Rhodopsin. J Phys Chem Lett 2024; 15:1993-1998. [PMID: 38349321 DOI: 10.1021/acs.jpclett.3c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microbial rhodopsins are photoreceptors containing the retinal Schiff base chromophore and are ubiquitous among microorganisms. The Schiff base configuration of the chromophore, 15-anti (C═N trans) or 15-syn (C═N cis), is structurally important for their functions, such as membrane ion transport, because this configuration dictates the orientation of the positively charged NH group that interacts with substrate ions. The 15-anti/syn configuration is thus essential for elucidating the ion-transport mechanisms in microbial rhodopsins. Here, we identified the Schiff base configuration during the photoreaction of a sodium pumping rhodopsin from Indibacter alkaliphilus using Raman spectroscopy. We found that the unique configurational change from the 13-cis, 15-anti to all-trans, 15-syn form occurs between the photointermediates termed O1 and O2, which accomplish the Na+ uptake and release, respectively. This isomerization is considered to give rise to the highly irreversible O1 → O2 step that is crucial for unidirectional Na+ transport.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
6
|
Sato Y, Hashimoto T, Kato K, Okamura A, Hasegawa K, Shinone T, Tanaka Y, Tanaka Y, Tsukazaki T, Tsukamoto T, Demura M, Yao M, Kikukawa T. Multistep conformational changes leading to the gate opening of light-driven sodium pump rhodopsin. J Biol Chem 2023; 299:105393. [PMID: 37890784 PMCID: PMC10679507 DOI: 10.1016/j.jbc.2023.105393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Membrane transport proteins require a gating mechanism that opens and closes the substrate transport pathway to carry out unidirectional transport. The "gating" involves large conformational changes and is achieved via multistep reactions. However, these elementary steps have not been clarified for most transporters due to the difficulty of detecting the individual steps. Here, we propose these steps for the gate opening of the bacterial Na+ pump rhodopsin, which outwardly pumps Na+ upon illumination. We herein solved an asymmetric dimer structure of Na+ pump rhodopsin from the bacterium Indibacter alkaliphilus. In one protomer, the Arg108 sidechain is oriented toward the protein center and appears to block a Na+ release pathway to the extracellular (EC) medium. In the other protomer, however, this sidechain swings to the EC side and then opens the release pathway. Assuming that the latter protomer mimics the Na+-releasing intermediate, we examined the mechanism for the swing motion of the Arg108 sidechain. On the EC surface of the first protomer, there is a characteristic cluster consisting of Glu10, Glu159, and Arg242 residues connecting three helices. In contrast, this cluster is disrupted in the second protomer. Our experimental results suggested that this disruption is a key process. The cluster disruption induces the outward movement of the Glu159-Arg242 pair and simultaneously rotates the seventh transmembrane helix. This rotation resultantly opens a space for the swing motion of the Arg108 sidechain. Thus, cluster disruption might occur during the photoreaction and then trigger sequential conformation changes leading to the gate-open state.
Collapse
Affiliation(s)
- Yukino Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tsubasa Hashimoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Akiko Okamura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Kaito Hasegawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tsukasa Shinone
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiki Tanaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoya Tsukazaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Takashi Tsukamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Xu J, Yang Q, Ma B, Li L, Kong F, Xiao L, Chen D. K +-Dependent Photocycle and Photocurrent Reveal the Uptake of K + in Light-Driven Sodium Pump. Int J Mol Sci 2023; 24:14414. [PMID: 37833864 PMCID: PMC10572131 DOI: 10.3390/ijms241914414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Engineering light-controlled K+ pumps from Na+-pumping rhodopsins (NaR) greatly expands the scope of optogenetic applications. However, the limited knowledge regarding the kinetic and selective mechanism of K+ uptake has significantly impeded the modification and design of light-controlled K+ pumps, as well as their practical applications in various fields, including neuroscience. In this study, we presented K+-dependent photocycle kinetics and photocurrent of a light-driven Na+ pump called Nonlabens dokdonensis rhodopsin 2 (NdR2). As the concentration of K+ increased, we observed the accelerated decay of M intermediate in the wild type (WT) through flash photolysis. In 100 mM KCl, the lifetime of the M decay was approximately 1.0 s, which shortened to around 0.6 s in 1 M KCl. Additionally, the K+-dependent M decay kinetics were also observed in the G263W/N61P mutant, which transports K+. In 100 mM KCl, the lifetime of the M decay was approximately 2.5 s, which shortened to around 0.2 s in 1 M KCl. According to the competitive model, in high KCl, K+ may be taken up from the cytoplasmic surface, competing with Na+ or H+ during M decay. This was further confirmed by the K+-dependent photocurrent of WT liposome. As the concentration of K+ increased to 500 mM, the amplitude of peak current significantly dropped to approximately ~60%. Titration experiments revealed that the ratio of the rate constant of H+ uptake (kH) to that of K+ uptake (kK) is >108. Compared to the WT, the G263W/N61P mutant exhibited a decrease of approximately 40-fold in kH/kK. Previous studies focused on transforming NaR into K+ pumps have primarily targeted the intracellular ion uptake region of Krokinobacter eikastus rhodopsin 2 (KR2) to enhance K+ uptake. However, our results demonstrate that the naturally occurring WT NdR2 is capable of intracellular K+ uptake without requiring structural modifications on the intracellular region. This discovery provides diverse options for future K+ pump designs. Furthermore, we propose a novel photocurrent-based approach to evaluate K+ uptake, which can serve as a reference for similar studies on other ion pumps. In conclusion, our research not only provides new insights into the mechanism of K+ uptake but also offers a valuable point of reference for the development of optogenetic tools and other applications in this field.
Collapse
Affiliation(s)
- Jikang Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Fei Kong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Lan Xiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Furutani Y, Yang CS. Ion-transporting mechanism in microbial rhodopsins: Mini-review relating to the session 5 at the 19th International Conference on Retinal Proteins. Biophys Physicobiol 2023; 20:e201005. [PMID: 38362333 PMCID: PMC10865854 DOI: 10.2142/biophysico.bppb-v20.s005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Kriebel CN, Asido M, Kaur J, Orth J, Braun P, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2. Biophys J 2023; 122:1003-1017. [PMID: 36528791 PMCID: PMC10111219 DOI: 10.1016/j.bpj.2022.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Asido
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer Orth
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Philipp Braun
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Asido M, Wachtveitl J. Photochemistry of the Light-Driven Sodium Pump Krokinobacter eikastus Rhodopsin 2 and Its Implications on Microbial Rhodopsin Research: Retrospective and Perspective. J Phys Chem B 2023; 127:3766-3773. [PMID: 36919947 DOI: 10.1021/acs.jpcb.2c08933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The discovery of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) in 2013 has changed the paradigm that cation transport in microbial rhodopsins is restricted to the translocation of protons. Even though this finding is already remarkable by itself, it also reignited more general discussions about the functional mechanism of ion transport. The unique composition of the retinal binding pocket in KR2 with a tight interaction between the retinal Schiff base and its respective counterion D116 also has interesting implications on the photochemical pathway of the chromophore. Here, we discuss the most recent advances in our understanding of the KR2 functionality from the primary event of photon absorption by all-trans retinal up to the actual protein response in the later phases of the photocycle, mainly from the point of view of optical spectroscopy. In this context, we furthermore highlight some of the ongoing debates on the photochemistry of microbial rhodopsins and give some perspectives for promising future directions in this field of research.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Doi Y, Watanabe J, Nii R, Tsukamoto T, Demura M, Sudo Y, Kikukawa T. Mutations conferring SO 42- pumping ability on the cyanobacterial anion pump rhodopsin and the resultant unique features of the mutant. Sci Rep 2022; 12:16422. [PMID: 36180556 PMCID: PMC9525653 DOI: 10.1038/s41598-022-20784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Membrane transport proteins can be divided into two types: those that bind substrates in a resting state and those that do not. In this study, we demonstrate that these types can be converted by mutations through a study of two cyanobacterial anion-pumping rhodopsins, Mastigocladopsis repens halorhodopsin (MrHR) and Synechocystis halorhodopsin (SyHR). Anion pump rhodopsins, including MrHR and SyHR, initially bind substrate anions to the protein center and transport them upon illumination. MrHR transports only smaller halide ions, Cl- and Br-, but SyHR also transports SO42-, despite the close sequence similarity to MrHR. We sought a determinant that could confer SO42- pumping ability on MrHR and found that the removal of a negative charge at the anion entrance is a prerequisite for SO42- transport by MrHR. Consistently, the reverse mutation in SyHR significantly weakened SO42- pump activity. Notably, the MrHR and SyHR mutants did not show SO42- induced absorption spectral shifts or changes in the photoreactions, suggesting no bindings of SO42- in their initial states or the bindings to the sites far from the protein centers. In other words, unlike wild-type SyHR, these mutants take up SO42- into their centers after illumination and release it before the ends of the photoreactions.
Collapse
Affiliation(s)
- Yuhei Doi
- School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Jo Watanabe
- School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ryota Nii
- School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takashi Tsukamoto
- School of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Makoto Demura
- School of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Kikukawa
- School of Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
13
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Reisomerization of retinal represents a molecular switch mediating Na + uptake and release by a bacterial sodium-pumping rhodopsin. J Biol Chem 2022; 298:102366. [PMID: 35963435 PMCID: PMC9483557 DOI: 10.1016/j.jbc.2022.102366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Sodium-pumping rhodopsins (NaRs) are membrane transporters that utilize light energy to pump Na+ across the cellular membrane. Within the NaRs, the retinal Schiff base chromophore absorbs light, and a photochemically induced transient state, referred to as the “O intermediate”, performs both the uptake and release of Na+. However, the structure of the O intermediate remains unclear. Here, we used time-resolved cryo-Raman spectroscopy under preresonance conditions to study the structure of the retinal chromophore in the O intermediate of an NaR from the bacterium Indibacter alkaliphilus. We observed two O intermediates, termed O1 and O2, having distinct chromophore structures. We show O1 displays a distorted 13-cis chromophore, while O2 contains a distorted all-trans structure. This finding indicated that the uptake and release of Na+ are achieved not by a single O intermediate but by two sequential O intermediates that are toggled via isomerization of the retinal chromophore. These results provide crucial structural insight into the unidirectional Na+ transport mediated by the chromophore-binding pocket of NaRs.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sappo-ro 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|