1
|
Jadav T, Rajput N, Kumar H, Behera SK, Sengupta P. Induction effect of antiretroviral bictegravir on the expression of Abcb1, Abcg2 and Abcc1 genes associated with P-gp, BCRP and MRP1 transporters present in rat peripheral blood mononuclear cells. Expert Opin Drug Metab Toxicol 2024; 20:529-539. [PMID: 38712502 DOI: 10.1080/17425255.2024.2352462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Antiretrovirals have the potential to cause drug interactions leading to inefficacy or toxicity via induction of efflux transporters through nuclear receptors, altering drug concentrations at their target sites. RESEARCH DESIGN AND METHODS This study used molecular dynamic simulations and qRT-PCR to investigate bictegravir's interactions with nuclear receptors PXR and CAR, and its effects on efflux transporters (P-gp, BCRP, MRP1) in rat PBMCs. PBMC/plasma drug concentrations were measured using LC-MS/MS to assess the functional impact of transporter expression. RESULTS Bictegravir significantly increased the expression of ABC transporters, with Car identified as a key mediator. This suggests that bictegravir's influence on nuclear receptors could affect drug transport and efficacy at the cellular level. CONCLUSIONS Bictegravir activates nuclear receptors enhancing efflux transporter expression. Understanding these interactions is crucial for preventing drug-drug interactions and reducing toxicity in clinical use. Combining CAR antagonists with bictegravir may prevent drug resistance and toxicity. However, these findings are based on preclinical data and necessitate further clinical trials to confirm their applicability in clinical settings.
Collapse
MESH Headings
- Animals
- Rats
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/drug effects
- Drug Interactions
- Male
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/pharmacokinetics
- Tandem Mass Spectrometry
- Heterocyclic Compounds, 3-Ring/pharmacology
- Heterocyclic Compounds, 3-Ring/pharmacokinetics
- Heterocyclic Compounds, 3-Ring/administration & dosage
- Piperazines/pharmacology
- Pregnane X Receptor/genetics
- Pregnane X Receptor/metabolism
- Molecular Dynamics Simulation
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Gene Expression Regulation/drug effects
- Constitutive Androstane Receptor
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Chromatography, Liquid/methods
- Rats, Sprague-Dawley
- Dioxolanes/pharmacology
- Dioxolanes/pharmacokinetics
- Dioxolanes/administration & dosage
- Amides
- Pyridones
Collapse
Affiliation(s)
- Tarang Jadav
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Santosh Kumar Behera
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Garcia-Maldonado E, Huber AD, Chai SC, Nithianantham S, Li Y, Wu J, Poudel S, Miller DJ, Seetharaman J, Chen T. Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR. Nat Commun 2024; 15:4054. [PMID: 38744881 PMCID: PMC11094003 DOI: 10.1038/s41467-024-48472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that can often be useful drug targets. Unfortunately, ligand promiscuity leads to two-thirds of receptors remaining clinically untargeted. PXR is a nuclear receptor that can be activated by diverse compounds to elevate metabolism, negatively impacting drug efficacy and safety. This presents a barrier to drug development because compounds designed to target other proteins must avoid PXR activation while retaining potency for the desired target. This problem could be avoided by using PXR antagonists, but these compounds are rare, and their molecular mechanisms remain unknown. Here, we report structurally related PXR-selective agonists and antagonists and their corresponding co-crystal structures to describe mechanisms of antagonism and selectivity. Structural and computational approaches show that antagonists induce PXR conformational changes incompatible with transcriptional coactivator recruitment. These results guide the design of compounds with predictable agonist/antagonist activities and bolster efforts to generate antagonists to prevent PXR activation interfering with other drugs.
Collapse
Affiliation(s)
- Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stanley Nithianantham
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Lu Y, Chen C, Zhuang D, Qian L. Molecular Dynamic Simulation To Reveal the Mechanism Underlying MGL-3196 Resistance to Thyroxine Receptor Beta. ACS OMEGA 2024; 9:20957-20965. [PMID: 38764645 PMCID: PMC11097192 DOI: 10.1021/acsomega.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Thyroxine receptor beta (TRβ) is a ligand-dependent nuclear receptor that participates in regulating multiple biological processes, particularly playing an important role in lipid metabolism regulation. TRβ is currently a popular therapeutic target for nonalcoholic steatohepatitis (NASH), while no drugs have been approved to treat this disease. MGL-3196 (Resmetirom) is the first TRβ agonist that has succeeded in phase III clinical trials for the treatment of NASH; therefore, studying its molecular mechanism of action is of great significance. In this study, we employed molecular dynamic simulation to investigate the interaction mode between MGL-3196 and TRβ at the all-atom level. More importantly, by comparing the binding patterns of MGL-3196 in several prevalent TRβ mutants, it was identified that the mutations R243Q and H435R located, respectively, around and within the ligand-binding pocket of TRβ cause TRβ to be insensitive to MGL-3196. This indicates that patients with NASH carrying these two mutations may exhibit resistance to the medication of MGL-3196, thereby highlighting the potential impact of TRβ mutations on TRβ-targeted treatment of NASH and beyond.
Collapse
Affiliation(s)
- Yi Lu
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Department
of Pediatrics, Chidren’s Hospital
of Fudan University, Shanghai 201102, China
| | - Chun Chen
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Deyi Zhuang
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Liling Qian
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Division
of Pulmonary Medicine, Shanghai Children’s Hospital, School
of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
4
|
Shizu R. [Understanding the Underlying Mechanism of Xenobiotic-Sensing Nuclear Receptor Activation]. YAKUGAKU ZASSHI 2023; 143:701-706. [PMID: 37661435 DOI: 10.1248/yakushi.23-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The nuclear receptor superfamily comprises 48 members in humans. In various organs, nuclear receptors regulate a variety of physiological functions through transcription of target genes. They are associated with the development and progression of endocrine and metabolic disorders, as well as with cancer development. Therefore, agonists and antagonists targeting nuclear receptors are currently being developed as therapeutic drugs for these diseases. Nuclear receptors can be activated through ligand binding or phosphorylation, which is mediated by various cellular signaling pathways. Activation of a nuclear receptor necessitates significant structural modifications in each of its domains. My research has been focused on unraveling the intricate mechanisms underlying the activation of nuclear receptors using constitutive androstane receptor (CAR) and pregnane X receptor (PXR) as model nuclear receptor proteins. CAR and PXR are highly expressed in the liver and are activated by a wide range of xenobiotics. Given their crucial roles in the metabolism and disposition of xenobiotics, as well as their potential in mediating drug-drug interactions, it is imperative to extensively study the mechanisms of xenobiotic-induced activation of these receptors. Such studies are essential for advancements in drug development, as well as for ensuring food and chemical safety. In this review, I elucidate the molecular basis underlying the activation of xenobiotic-responsive nuclear receptors.
Collapse
Affiliation(s)
- Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Sato T, Shizu R, Miura Y, Hosaka T, Kanno Y, Sasaki T, Yoshinari K. Development of a strategy to identify and evaluate direct and indirect activators of constitutive androstane receptor in rats. Food Chem Toxicol 2022; 170:113510. [DOI: 10.1016/j.fct.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
6
|
D’Arrigo G, Autiero I, Gianquinto E, Siragusa L, Baroni M, Cruciani G, Spyrakis F. Exploring Ligand Binding Domain Dynamics in the NRs Superfamily. Int J Mol Sci 2022; 23:ijms23158732. [PMID: 35955864 PMCID: PMC9369052 DOI: 10.3390/ijms23158732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Nuclear receptors (NRs) are transcription factors that play an important role in multiple diseases, such as cancer, inflammation, and metabolic disorders. They share a common structural organization composed of five domains, of which the ligand-binding domain (LBD) can adopt different conformations in response to substrate, agonist, and antagonist binding, leading to distinct transcription effects. A key feature of NRs is, indeed, their intrinsic dynamics that make them a challenging target in drug discovery. This work aims to provide a meaningful investigation of NR structural variability to outline a dynamic profile for each of them. To do that, we propose a methodology based on the computation and comparison of protein cavities among the crystallographic structures of NR LBDs. First, pockets were detected with the FLAPsite algorithm and then an "all against all" approach was applied by comparing each pair of pockets within the same sub-family on the basis of their similarity score. The analysis concerned all the detectable cavities in NRs, with particular attention paid to the active site pockets. This approach can guide the investigation of NR intrinsic dynamics, the selection of reference structures to be used in drug design and the easy identification of alternative binding sites.
Collapse
Affiliation(s)
- Giulia D’Arrigo
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy
| | - Ida Autiero
- Molecular Horizon Srl, Via Montelino 30, 06084 Bettona, Italy
- National Research Council, Institute of Biostructures and Bioimaging, 80138 Naples, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy
| | - Lydia Siragusa
- Molecular Horizon Srl, Via Montelino 30, 06084 Bettona, Italy
- Molecular Discovery Ltd., Theobald Street, Elstree Borehamwood, Hertfordshire WD6 4PJ, UK
| | - Massimo Baroni
- Molecular Discovery Ltd., Theobald Street, Elstree Borehamwood, Hertfordshire WD6 4PJ, UK
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS), Via Elce di Sotto 8, 06123 Perugia, Italy
- Correspondence: (G.C.); (F.S.); Tel.: +39-075-5855629 (G.C.); +39-011-6707185 (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy
- Correspondence: (G.C.); (F.S.); Tel.: +39-075-5855629 (G.C.); +39-011-6707185 (F.S.)
| |
Collapse
|
7
|
Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput Struct Biotechnol J 2022; 20:3004-3018. [PMID: 35782743 PMCID: PMC9218138 DOI: 10.1016/j.csbj.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
|
8
|
Shizu R, Ezaki K, Sato T, Sugawara A, Hosaka T, Sasaki T, Yoshinari K. PXR Suppresses PPARα-Dependent HMGCS2 Gene Transcription by Inhibiting the Interaction between PPARα and PGC1α. Cells 2021; 10:cells10123550. [PMID: 34944058 PMCID: PMC8700377 DOI: 10.3390/cells10123550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
Background: PXR is a xenobiotic-responsive nuclear receptor that controls the expression of drug-metabolizing enzymes. Drug-induced activation of PXR sometimes causes drug–drug interactions due to the induced metabolism of co-administered drugs. Our group recently reported a possible drug–drug interaction mechanism via an interaction between the nuclear receptors CAR and PPARα. As CAR and PXR are structurally and functionally related receptors, we investigated possible crosstalk between PXR and PPARα. Methods: Human hepatocyte-like HepaRG cells were treated with various PXR ligands, and mRNA levels were determined by quantitative reverse transcription PCR. Reporter assays using the HMGCS2 promoter containing a PPARα-binding motif and mammalian two-hybrid assays were performed in HepG2 or COS-1 cells. Results: Treatment with PXR activators reduced the mRNA levels of PPARα target genes in HepaRG cells. In reporter assays, PXR suppressed PPARα-dependent gene expression in HepG2 cells. In COS-1 cells, co-expression of PGC1α, a common coactivator of PPARα and PXR, enhanced PPARα-dependent gene transcription, which was clearly suppressed by PXR. Consistently, in mammalian two-hybrid assays, the interaction between PGC1α and PPARα was attenuated by ligand-activated PXR. Conclusion: The present results suggest that ligand-activated PXR suppresses PPARα-dependent gene expression by inhibiting PGC1α recruitment.
Collapse
|
9
|
Rigalli JP, Theile D, Nilles J, Weiss J. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning. Cells 2021; 10:cells10113137. [PMID: 34831358 PMCID: PMC8625645 DOI: 10.3390/cells10113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.
Collapse
|