1
|
Grandin N, Charbonneau M. Dysfunction of Telomeric Cdc13-Stn1-Ten1 Simultaneously Activates DNA Damage and Spindle Checkpoints. Cells 2024; 13:1605. [PMID: 39404369 PMCID: PMC11475793 DOI: 10.3390/cells13191605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Telomeres, the ends of eukaryotic linear chromosomes, are composed of repeated DNA sequences and specialized proteins, with the conserved telomeric Cdc13/CTC1-Stn1-Ten1 (CST) complex providing chromosome stability via telomere end protection and the regulation of telomerase accessibility. In this study, SIZ1, coding for a SUMO E3 ligase, and TOP2 (a SUMO target for Siz1 and Siz2) were isolated as extragenic suppressors of Saccharomyces cerevisiae CST temperature-sensitive mutants. ten1-sz, stn1-sz and cdc13-sz mutants were isolated next due to being sensitive to intracellular Siz1 dosage. In parallel, strong negative genetic interactions between mutants of CST and septins were identified, with septins being noticeably sumoylated through the action of Siz1. The temperature-sensitive arrest in these new mutants of CST was dependent on the G2/M Mad2-mediated and Bub2-mediated spindle checkpoints as well as on the G2/M Mec1-mediated DNA damage checkpoint. Our data suggest the existence of yet unknown functions of the telomeric Cdc13-Stn1-Ten1 complex associated with mitotic spindle positioning and/or assembly that could be further elucidated by studying these new ten1-sz, stn1-sz and cdc13-sz mutants.
Collapse
Affiliation(s)
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France;
| |
Collapse
|
2
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
3
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
4
|
Coloma J, Gonzalez-Rodriguez N, Balaguer FA, Gmurczyk K, Aicart-Ramos C, Nuero ÓM, Luque-Ortega JR, Calugaru K, Lue NF, Moreno-Herrero F, Llorca O. Molecular architecture and oligomerization of Candida glabrata Cdc13 underpin its telomeric DNA-binding and unfolding activity. Nucleic Acids Res 2023; 51:668-686. [PMID: 36629261 PMCID: PMC9881146 DOI: 10.1093/nar/gkac1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.
Collapse
Affiliation(s)
- Javier Coloma
- Correspondence may also be addressed to Javier Coloma. Tel: +34 91 732 8000 (Ext 3033);
| | | | - Francisco A Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Karolina Gmurczyk
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Óscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Kimberly Calugaru
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Oscar Llorca
- To whom correspondence should be addressed. Tel: +34 91 732 8000 (Ext 3000);
| |
Collapse
|
5
|
Riquelme J, Takada S, van Dijk T, Peña F, Boogaard MW, van Duyvenvoorde HA, Pico-Knijnenburg I, Wit JM, van der Burg M, Mericq V, Losekoot M. Primary Ovarian Failure in Addition to Classical Clinical Features of Coats Plus Syndrome in a Female Carrying 2 Truncating Variants of CTC1. Horm Res Paediatr 2022; 94:448-455. [PMID: 34706368 DOI: 10.1159/000520410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022] Open
Abstract
Coats plus syndrome is an autosomal recessive multisystemic and pleiotropic disorder affecting the eyes, brain, bone, and gastrointestinal tract, usually caused by compound heterozygous variants of the conserved telomere maintenance component 1 gene (CTC1), involved in telomere homeostasis and replication. So far, most reported patients are compound heterozygous for a truncating mutation and a missense variant. The phenotype is believed to result from telomere dysfunction, with accumulation of DNA damage, cellular senescence, and stem cell depletion. Here, we report a 23-year-old female with prenatal and postnatal growth retardation, microcephaly, osteopenia, recurrent fractures, intracranial calcification, leukodystrophy, parenchymal brain cysts, bicuspid aortic valve, and primary ovarian failure. She carries a previously reported maternally inherited pathogenic variant in exon 5 (c.724_727del, p.(Lys242Leufs*41)) and a novel, paternally inherited splice site variant (c.1617+5G>T; p.(Lys480Asnfs*17)) in intron 9. CTC1 transcript analysis showed that the latter resulted in skipping of exon 9. A trace of transcripts was normally spliced resulting in the presence of a low level of wild-type CTC1 transcripts. We speculate that ovarian failure is caused by telomere shortening or chromosome cohesion failure in oocytes and granulosa cells, with early decrease in follicular reserve. This is the first patient carrying 2 truncating CTC1 variants and the first presenting primary ovarian failure.
Collapse
Affiliation(s)
- Joel Riquelme
- Department of Pediatrics, University of Chile, Hospital San Juan de Dios, Santiago, Chile.,Department of Pediatrics, Clínica Las Condes, Santiago, Chile
| | - Sanami Takada
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa van Dijk
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fernanda Peña
- Department of Pediatrics, Hospital San Juan de Dios, Santiago, Chile
| | - Merel W Boogaard
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veronica Mericq
- Department of Pediatrics, Clínica Las Condes, Santiago, Chile.,Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Wang L, Ma T, Liu W, Li H, Luo Z, Feng X. Pan-Cancer Analyses Identify the CTC1-STN1-TEN1 Complex as a Protective Factor and Predictive Biomarker for Immune Checkpoint Blockade in Cancer. Front Genet 2022; 13:859617. [PMID: 35368664 PMCID: PMC8966541 DOI: 10.3389/fgene.2022.859617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The CTC1-STN1-TEN1 (CST) complex plays a crucial role in telomere replication and genome stability. However, the detailed mechanisms of CST regulation in cancer remain largely unknown. Here, we perform a comprehensive analysis of CST across 33 cancer types using multi-omic data from The Cancer Genome Atlas. In the genomic landscape, we identify CTC1/STN1 deletion and mutation and TEN1 amplification as the dominant alteration events. Expressions of CTC1 and STN1 are decreased in tumors compared to those in adjacent normal tissues. Clustering analysis based on CST expression reveals three cancer clusters displaying differences in survival, telomerase activity, cell proliferation, and genome stability. Interestingly, we find that CTC1 and STN1, but not TEN1, are co-expressed and associated with better survival. CTC1-STN1 is positively correlated with CD8 T cells and B cells and predicts a better response to immune checkpoint blockade in external datasets of cancer immunotherapy. Pathway analysis shows that MYC targets are negatively correlated with CTC1-STN1. We experimentally validated that knockout of CTC1 increased the mRNA level of c-MYC. Furthermore, CTC1 and STN1 are repressed by miRNAs and lncRNAs. Finally, by mining the connective map database, we discover a number of potential drugs that may target CST. In sum, this study illustrates CTC1-STN1 as a protective factor and provides broad molecular signatures for further functional and therapeutic studies of CST in cancer.
Collapse
Affiliation(s)
- Lishuai Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tengfei Ma
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heping Li, ; Zhenhua Luo, ; Xuyang Feng,
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heping Li, ; Zhenhua Luo, ; Xuyang Feng,
| | - Xuyang Feng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heping Li, ; Zhenhua Luo, ; Xuyang Feng,
| |
Collapse
|
7
|
Dai W, Liu H. MicroRNA-886 suppresses osteosarcoma cell proliferation and its maturation is suppressed by long non-coding RNA OXCT1-AS1. Bioengineered 2022; 13:5769-5778. [PMID: 35191809 PMCID: PMC8973740 DOI: 10.1080/21655979.2022.2031669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the roles of microRNA-886 (miR-886) and long non-coding RNA (lncRNA) OXCT1-AS1 in osteosarcoma (OS). We predicted that they might interact with each other. The expression of OXCT1-AS1 and miR-886 (mature and premature) in osteosarcoma and paired non-tumor tissues from 66 OS patients was negatively correlated. Overexpression and silencing assays showed that OXCT1-AS1 suppresses miR-886 maturation. RNA-RNA pulldown and subcellular fractionation assays demonstrated the direct interaction between OXCT1-AS1 and miR-886. BrdU proliferation assays revealed that OXCT1-AS1 promoted OS cell proliferation, and miR-886 reduced the enhancing effects of OXCT1-AS1 on OS cell proliferation. Western blot showed that OXCT1-AS1 had no effects on the levels of epithelial-mesenchymal transition biomarkers. Overall, OXCT1-AS1 suppresses miR-886 maturation to promote OS cell proliferation.
Collapse
Affiliation(s)
- Wen Dai
- Joint Surgery Department, First People's Hospital of Shangqiu City, Shangqiu City, Henan Province, China
| | - Han Liu
- General Medicine Department, First People's Hospital of Shangqiu City, Shangqiu City, Henan Province, China
| |
Collapse
|
8
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|