1
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025; 22:e00512. [PMID: 39755501 PMCID: PMC12047394 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
2
|
Carroll EC, Yang H, Jones JG, Oehler A, Charvat AF, Montgomery KM, Yung A, Millbern Z, Vinueza NR, DeGrado WF, Mordes DA, Condello C, Gestwicki JE. Methods for high throughput discovery of fluoroprobes that recognize tau fibril polymorphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610853. [PMID: 39282355 PMCID: PMC11398390 DOI: 10.1101/2024.09.02.610853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections. Here, we leverage advances in protein adaptive differential scanning fluorimetry (paDSF) to screen the Aurora collection of 300+ fluorescent dyes against multiple synthetic tau fibril polymorphs. This screen, coupled with orthogonal secondary assays, revealed pan-fibril binding chemotypes, as well as fluoroprobes selective for subsets of fibrils. One fluoroprobe recognized tau pathology in ex vivo brain slices from Alzheimer's disease patients. We propose that these scaffolds represent entry points for development of selective fibril ligands and, more broadly, that high throughput, fluorescence-based dye screening is a platform for their discovery.
Collapse
Affiliation(s)
- Emma C Carroll
- Department of Chemistry, San José State University, San José, CA 95192
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Hyunjun Yang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Julia G Jones
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Annemarie F Charvat
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Kelly M Montgomery
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Anthony Yung
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Zoe Millbern
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - Nelson R Vinueza
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Daniel A Mordes
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pathology, University of California San Francisco; San Francisco, CA 94158
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Neurology, University of California San Francisco; San Francisco, CA 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| |
Collapse
|
3
|
Sun K, Patel T, Kang SG, Yarahmady A, Srinivasan M, Julien O, Heras J, Mok SA. Disease-Associated Mutations in Tau Encode for Changes in Aggregate Structure Conformation. ACS Chem Neurosci 2023; 14:4282-4297. [PMID: 38054595 PMCID: PMC10741665 DOI: 10.1021/acschemneuro.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
The accumulation of tau fibrils is associated with neurodegenerative diseases, which are collectively termed tauopathies. Cryo-EM studies have shown that the packed fibril core of tau adopts distinct structures in different tauopathies, such as Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy. A subset of tauopathies are linked to missense mutations in the tau protein, but it is not clear whether these mutations impact the structure of tau fibrils. To answer this question, we developed a high-throughput protein purification platform and purified a panel of 37 tau variants using the full-length 0N4R splice isoform. Each of these variants was used to create fibrils in vitro, and their relative structures were studied using a high-throughput protease sensitivity platform. We find that a subset of the disease-associated mutations form fibrils that resemble wild-type tau, while others are strikingly different. The impact of mutations on tau structure was not clearly associated with either the location of the mutation or the relative kinetics of fibril assembly, suggesting that tau mutations alter the packed core structures through a complex molecular mechanism. Together, these studies show that single-point mutations can impact the assembly of tau into fibrils, providing insight into its association with pathology and disease.
Collapse
Affiliation(s)
- Kerry
T. Sun
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Tark Patel
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sang-Gyun Kang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Allan Yarahmady
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Mahalashmi Srinivasan
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Jónathan Heras
- Department
of Mathematics and Computer Sciences, University
of La Rioja, Logroño, Spain 26004
| | - Sue-Ann Mok
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
4
|
Melki R. Amyloid polymorphs and pathological diversities. Neurochem Int 2022; 156:105335. [PMID: 35395342 DOI: 10.1016/j.neuint.2022.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
The presence of protein aggregates within the central nervous system is intimately associated to debilitating neurodegenerative diseases. While the aggregation of proteins, that share no primary structure identity, is understandable in different diseases, that of a given protein yielding distinct pathologies is counterintuitive. This short review relates molecular and mechanistic processes to the observed pathological diversity.
Collapse
Affiliation(s)
- Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses cedex, France.
| |
Collapse
|