1
|
Tomilova YE, Russkikh NE, Yi IM, Shaburova EV, Tomilov VN, Pyrinova GB, Brezhneva SO, Tikhonyuk OS, Gololobova NS, Popichenko DV, Arkhipov MO, Bryzgalov LO, Brenner EV, Artyukh AA, Shtokalo DN, Antonets DV, Ivanov MK. Enhancing the reverse transcriptase function in Taq polymerase via AI-driven multiparametric rational design. Front Bioeng Biotechnol 2024; 12:1495267. [PMID: 39720166 PMCID: PMC11666352 DOI: 10.3389/fbioe.2024.1495267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties. Methods The experimental procedure was conducted in several stages: 1) On the basis of a foundational paper, we selected 18 candidate mutations known to affect RTase activity across six sites. These candidates, along with the wild type, were assessed in the wet lab for multiple properties to establish an initial training dataset. 2) Using embeddings of Taq polymerase variants generated by a protein language model, we trained a Ridge regression model to predict multiple enzyme properties. This model guided the selection of 14 new candidates for experimental validation, expanding the dataset for further refinement. 3) To better manage risk by assessing confidence intervals on predictions, we transitioned to Gaussian process regression and trained this model on an expanded dataset comprising 33 data points. 4) With this enhanced model, we conducted an in silico screen of over 18 million potential mutations, narrowing the field to 16 top candidates for comprehensive wet-lab evaluation. Results and Discussion This iterative, data-driven strategy ultimately led to the identification of 18 enzyme variants that exhibited markedly improved RTase activity while maintaining a favorable balance of other key properties. These enhancements were generally accompanied by lower Kd, moderately reduced fidelity, and greater tolerance to noncanonical substrates, thereby illustrating a strong interdependence among these traits. Several enzymes validated via this procedure were effective in single-enzyme real-time reverse-transcription PCR setups, implying their utility for the development of new tools for real-time reverse-transcription PCR technologies, such as pathogen RNA detection and gene expression analysis. This study illustrates how AI can be effectively integrated with experimental bioengineering to enhance enzyme functionality systematically. Our approach offers a robust framework for designing enzyme mutants tailored to specific biotechnological applications. The results of our biological activity predictions for mutated Taq polymerases can be accessed at https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms.
Collapse
Affiliation(s)
| | | | | | - Elizaveta V. Shaburova
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | - Dmitry N. Shtokalo
- AcademGene LLC, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Informatics Systems SB RAS, Novosibirsk, Russia
| | - Denis V. Antonets
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail K. Ivanov
- AO Vector-Best, Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Sun Y, Ko DH, Gao J, Fu K, Mao Y, He Y, Tian H. Expression and functional study of DNA polymerases from Psychrobacillus sp. BL-248-WT-3 and FJAT-21963. Front Microbiol 2024; 15:1501020. [PMID: 39633807 PMCID: PMC11615080 DOI: 10.3389/fmicb.2024.1501020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
The properties of DNA polymerases isolated from thermophilic and mesophilic microorganisms, such as the thermophilic Geobacillus stearothermophilus (Bst) and mesophilic Bacillus subtilis phage (Phi29), have been widely researched. However, DNA polymerases in psychrophilic microorganisms remain poorly understood. In this study, we present for the first time the expression and functional characterization of DNA polymerases PWT-WT and FWT-WT from Psychrobacillus sp. BL-248-WT-3 and FJAT-21963. Enzymatic activity assays revealed that FWT-WT possessed strand displacement but lacked exonuclease activity and high ionic strength tolerance, whereas PWT-WT lacked all these properties. Further protein engineering and biochemical analysis identified D423 and S490 as critical mutation sites for improving strand displacement and tolerance to high ionic strength, specifically in the presence of 0-0.3 M potassium chloride (KCl), sodium chloride (NaCl), and potassium acetate (KAc). Three-dimensional structural analysis demonstrated that the size and the electric charge of the single-stranded DNA (ssDNA) encapsulation entrance were pivotal factors in the binding of the ssDNA template.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun He
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Hui Tian
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Zhang L, Tian R, Xiao J, Wang Y, Feng K, Chen G. Preliminary Study on Polymerization between Hemoglobin and Enzymes during the Preparation of PolyHb-SOD-CAT-CA. DOKL BIOCHEM BIOPHYS 2024; 518:463-474. [PMID: 39196524 DOI: 10.1134/s1607672924600477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
The objective of this study was to explore the influence of different factors on the aggregation effect on hemoglobin (Hb) and enzymes during the preparation of Polyhemoglobin-Superoxide dismutase-Catalase-Carbonic anhydrase (PolyHb-SOD-CAT-CA). Several factors including temperatures, pH values, Glutaraldehyde (GDA) amounts and enzymes amounts were investigated systematically to study their effects on the enzymes recoveries and polymerization rates including the Superoxide dismutase (SOD), Catalase (CAT) and Carbonic anhydrase (CA), as well as their effects on the molecular weight distribution of PolyHb-SOD-CAT-CA. Then the oxygen affinity and methemoglobin (MetHb) contents of obtained PolyHb-SOD-CAT-CA were measured to evaluate the effects of enzyme crosslinking on the properties of Polyhemoglobin (PolyHb) moieties in the molecular structure of obtained PolyHb-SOD-CAT-CA conjugate. The results showed that the enzyme recoveries and polymerization rates could be decreased with the temperatures increasing and could be generally kept stable in the physiological pH conditions, but presented only slight changes among the investigated enzyme amounts ranges. Although the GDA concentration increasing could promote the enzyme polymerization rates, the enzyme recoveries decreased in whole. The polymerization rate and molecular size of PolyHb-SOD-CAT-CA conjugate increased with the elevation of temperature and the concentration of GDA. Lastly, the P50 values, Hill coefficients, and MetHb contents of PolyHb-SOD-CAT-CA conjugate with different enzyme crosslinking degrees exhibited no obvious differences with each other. In conclusion, the polymerization reactions between enzymes and Hb molecules could be remarkably affected by temperatures, pH values, and GDA amounts, and the enzyme crosslinking presented no obvious effects on the Hb properties, especially about the oxygen affinity and oxidation degrees.
Collapse
Affiliation(s)
- Lili Zhang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Renci Tian
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Jiawei Xiao
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Yaoxi Wang
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China
| | - Kun Feng
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
| | - Gang Chen
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China.
| |
Collapse
|
4
|
Wu Y, Chang Y, Sun Y, Wang Y, Li K, Lu Z, Liu Q, Wang F, Wei L. A multi-AS-PCR-coupled CRISPR/Cas12a assay for the detection of ten single-base mutations. Anal Chim Acta 2024; 1320:343027. [PMID: 39142774 DOI: 10.1016/j.aca.2024.343027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Single-nucleotide polymorphism (SNP) detection is critical for diagnosing diseases, and the development of rapid and accurate diagnostic tools is essential for treatment and prevention. Allele-specific polymerase chain reaction (AS-PCR) is widely used for detecting SNPs with multiplexing capabilities, while CRISPR-based technologies provide high sensitivity and specificity in targeting mutation sites through specific guide RNAs (gRNAs). In this study, we have integrated the high sensitivity and specificity of CRISPR technology with the multiplexing capabilities of AS-PCR, achieving the simultaneous detection of ten single-base mutations. As for Multi-AS-PCR, our research identified that competitive inhibition of primers targeting the same loci, coupled with divergent amplification efficiencies of these primers, could result in diminished amplification efficiency. Consequently, we adjusted and optimized primer combinations and ratios to enhance the amplification efficacy of Multi-AS-PCR. Finally, we successfully developed a novel nested Multi-AS-PCR-Cas12a method for multiplex SNPs detection. To evaluate the clinical utility of this method in a real-world setting, we applied it to diagnose rifampicin-resistant tuberculosis (TB). The limit of detection (LoD) for the nested Multi-AS-PCR-Cas12a was 102 aM, achieving sensitivity, specificity, positive predictive value, and negative predictive value of 100 %, 93.33 %, 90.00 %, and 100 %, respectively, compared to sequencing. In summary, by employing an innovative design that incorporates a universal reverse primer alongside ten distinct forward allele-specific primers, the nested Multi-AS-PCR-Cas12a technique facilitates the parallel detection of ten rpoB gene SNPs. This method also holds broad potential for the detection of drug-resistant gene mutations in infectious diseases and tumors, as well as for the screening of specific genetic disorders.
Collapse
Affiliation(s)
- Yaozhou Wu
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yanbin Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yingying Sun
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Yulin Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Zhangping Lu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Qianqian Liu
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| | - Lianhua Wei
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Xu H, Xu D, Liu Y. Molecular Biology Applications of Psychrophilic Enzymes: Adaptations, Advantages, Expression, and Prospective. Appl Biochem Biotechnol 2024; 196:5765-5789. [PMID: 38183603 DOI: 10.1007/s12010-023-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Psychrophilic enzymes are primarily produced by microorganisms from extremely low-temperature environments which are known as psychrophiles. Their high efficiency at low temperatures and easy heat inactivation property have attracted extensive attention from various food and industrial bioprocesses. However, the application of these enzymes in molecular biology is still limited. In a previous review, the applications of psychrophilic enzymes in industries such as the detergent additives, the food additives, the bioremediation, and the pharmaceutical medicine, and cosmetics have been discussed. In this review, we discuss the main cold adaptation characteristics of psychrophiles and psychrophilic enzymes, as well as the relevant information on different psychrophilic enzymes in molecular biology. We summarize the mining and screening methods of psychrophilic enzymes. We finally recap the expression of psychrophilic enzymes. We aim to provide a reference process for the exploration and expression of new generation of psychrophilic enzymes.
Collapse
Affiliation(s)
- Hu Xu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dawei Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Sun Y, Ko DH, Gao J, Fu K, Mao Y, He Y, Tian H. Engineering psychrophilic polymerase for nanopore long-read sequencing. Front Bioeng Biotechnol 2024; 12:1406722. [PMID: 39011153 PMCID: PMC11246872 DOI: 10.3389/fbioe.2024.1406722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Unveiling the potential application of psychrophilic polymerases as candidates for polymerase-nanopore long-read sequencing presents a departure from conventional choices such as thermophilic Bacillus stearothermophilus (Bst) renowned for its limitation in temperature and mesophilic Bacillus subtilis phage (phi29) polymerases for limitations in strong exonuclease activity and weak salt tolerance. Exploiting the PB-Bst fusion DNA polymerases from Psychrobacillus (PB) and Bacillus stearothermophilus (Bst), our structural and biochemical analysis reveal a remarkable enhancement in salt tolerance and a concurrent reduction in exonuclease activity, achieved through targeted substitution of a pivotal functional domain. The sulfolobus 7-kDa protein (Sso7d) emerges as a standout fusion domain, imparting significant improvements in PB-Bst processivity. Notably, this study elucidates additional functional sites regulating exonuclease activity (Asp43 and Glu45) and processivity using artificial nucleotides (Glu266, Gln283, Leu334, Glu335, Ser426, and Asp430). By disclosing the intricate dynamics in exonuclease activity, strand displacement, and artificial nucleotide-based processivity at specific functional sites, our findings not only advance the fundamental understanding of psychrophilic polymerases but also provide novel insights into polymerase engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun He
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Hui Tian
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| |
Collapse
|
7
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
8
|
Han SW, Won HS. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs). Biomolecules 2024; 14:479. [PMID: 38672495 PMCID: PMC11048544 DOI: 10.3390/biom14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such as cyclization, methylation, and proteolysis, play crucial roles in enhancing RiPP stability and bioactivity. Advances in synthetic biology and bioinformatics have significantly advanced the field, introducing new methods for RiPP production and engineering. These methods encompass strategies for heterologous expression, genetic refactoring, and exploiting the substrate tolerance of tailoring enzymes to create novel RiPP analogs with improved or entirely new functions. Furthermore, the introduction and implementation of cutting-edge screening methods, including mRNA display, surface display, and two-hybrid systems, have expedited the identification of RiPPs with significant pharmaceutical potential. This comprehensive review not only discusses the current advancements in RiPP research but also the promising opportunities that leveraging these bioactive peptides for therapeutic applications presents, illustrating the synergy between traditional biochemistry and contemporary synthetic biology and genetic engineering approaches.
Collapse
Affiliation(s)
- Sang-Woo Han
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
9
|
Kipfer ET, Hauser D, Lett MJ, Otte F, Urda L, Zhang Y, Lang CMR, Chami M, Mittelholzer C, Klimkait T. Rapid cloning-free mutagenesis of new SARS-CoV-2 variants using a novel reverse genetics platform. eLife 2023; 12:RP89035. [PMID: 37988285 PMCID: PMC10662946 DOI: 10.7554/elife.89035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the coronavirus disease 2019 pandemic, already established methods were challenged by the large genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.
Collapse
Affiliation(s)
- Enja Tatjana Kipfer
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Martin J Lett
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Christopher MR Lang
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, MattenstrasseBaselSwitzerland
| | | | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| |
Collapse
|
10
|
Kipfer E, Hauser D, Lett MJ, Otte F, Urda L, Zhang Y, Lang CMR, Chami M, Mittelholzer C, Klimkait T. Rapid cloning-free mutagenesis of new SARS-CoV-2 variants using a novel reverse genetics platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540343. [PMID: 37292682 PMCID: PMC10245781 DOI: 10.1101/2023.05.11.540343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the COVID-19 pandemic, already established methods were challenged by the large genome of SARS-CoV-2. Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity, using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.
Collapse
Affiliation(s)
- Enja Kipfer
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Martin J. Lett
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Christopher M. R. Lang
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Mittelholzer
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| |
Collapse
|
11
|
Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms 2022; 10:microorganisms10061161. [PMID: 35744679 PMCID: PMC9227589 DOI: 10.3390/microorganisms10061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Enzymes purified from psychrophilic microorganisms prove to be efficient catalysts at low temperatures and possess a great potential for biotechnological applications. The low-temperature catalytic activity has to come from specific structural fluctuations involving the active site region, however, the relationship between protein conformational stability and enzymatic activity is subtle. We provide a survey of the thermodynamic stability of globular proteins and their rationalization grounded in a theoretical approach devised by one of us. Furthermore, we provide a link between marginal conformational stability and protein flexibility grounded in the harmonic approximation of the vibrational degrees of freedom, emphasizing the occurrence of long-wavelength and excited vibrations in all globular proteins. Finally, we offer a close view of three enzymes: chloride-dependent α-amylase, citrate synthase, and β-galactosidase.
Collapse
|