1
|
Burgmaier K, Buffin-Meyer B, Klein J, Becknell B, McLeod D, Boeckhaus J, Gross O, Dafinger C, Siwy J, Decramer S, Schaefer F, Liebau MC, Schanstra JP. Urinary peptide signature distinguishes autosomal recessive polycystic kidney disease from other causes of chronic kidney disease. Clin Kidney J 2025; 18:sfaf093. [PMID: 40322675 PMCID: PMC12044329 DOI: 10.1093/ckj/sfaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Indexed: 05/08/2025] Open
Abstract
Background The diagnosis of autosomal recessive polycystic kidney disease (ARPKD) can be hampered by its pronounced phenotypic variability and ARPKD-mimicking phenocopies. Here, for the first time we specifically studied the urinary peptidome of patients with ARPKD with the aim of distinguishing ARPKD from other causes of chronic kidney disease (CKD). Methods Fifty-eight urine samples from patients with ARPKD, 662 urine samples from paediatric patients with CKD with various other CKD aetiologies and 45 samples from healthy children were included. The urinary peptidome was analysed by capillary electrophoresis/mass spectrometry. Results A 77-peptide signature specific for ARPKD was identified. Application of this signature in a matched random validation set of 19 samples of patients with ARPKD, 23 samples from patients with other CKD and 21 samples from healthy individuals led to a sensitivity of 84.2% [95% confidence interval (CI) 60.4-96.6], a specificity of 100% (95% CI 92.0-100%) and an area under the receiver operating characteristics curve (AUC) of 0.994 (95% CI 0.93-1.00). The 77-peptide signature displayed a specificity of 76.1% (95% CI 72.4-79.5) and an AUC of 0.88 (95% CI 0.85-0.90) in 591 samples from non-matched children with various CKD aetiologies. The signature was primarily (83%) composed of collagen fragments indicating structural damage. Of the remaining peptides, five originated from proteins known to bind to calcium potentially linking the current work to defaults in calcium signalling in polycystic disease. Conclusions We determined a urinary peptide signature that identifies paediatric patients with ARPKD with high precision among a population of children with CKD. Knowledge of the identity of the underlying peptides offers a novel starting point for discussion of possible pathophysiological processes involved in ARPKD.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut of Metabolic and Cardiovascular Disease (I2MC), Toulouse, France
- University of Toulouse, Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut of Metabolic and Cardiovascular Disease (I2MC), Toulouse, France
- University of Toulouse, Toulouse, France
| | - Brian Becknell
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH USA
| | - Daryl McLeod
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH USA
| | - Jan Boeckhaus
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Claudia Dafinger
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany
- Center for Molecular Medicine, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany
| | | | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut of Metabolic and Cardiovascular Disease (I2MC), Toulouse, France
- University of Toulouse, Toulouse, France
- Department of Pediatric Internal Medicine, Rheumatology and Nephrology, Toulouse University Hospital, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Max C Liebau
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany
- Center for Molecular Medicine, Center for Rare Diseases and Center for Family Health, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut of Metabolic and Cardiovascular Disease (I2MC), Toulouse, France
- University of Toulouse, Toulouse, France
| |
Collapse
|
2
|
Chen G, Li L, Wang R, Liu B, Cao Z, Zhao N, Tan Y, He X, Zhao J, Lu C. Integrative network analysis identifies pivotal host genes and pathways for SARS-CoV-2 infection. Genes Dis 2025; 12:101206. [PMID: 39386106 PMCID: PMC11462195 DOI: 10.1016/j.gendis.2024.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/05/2023] [Indexed: 10/12/2024] Open
Affiliation(s)
- Gao Chen
- School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiqi Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Anglès F, Gupta V, Wang C, Balch WE. COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation. Sci Rep 2024; 14:10160. [PMID: 38698045 PMCID: PMC11065896 DOI: 10.1038/s41598-024-60687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Vijay Gupta
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Zhu Y, Li Q. Multifaceted roles of PDCD6 both within and outside the cell. J Cell Physiol 2024; 239:e31235. [PMID: 38436472 DOI: 10.1002/jcp.31235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Programmed cell death protein 6 (PDCD6) is an evolutionarily conserved Ca2+-binding protein. PDCD6 is involved in regulating multifaceted and pleiotropic cellular processes in different cellular compartments. For instance, nuclear PDCD6 regulates apoptosis and alternative splicing. PDCD6 is required for coat protein complex II-dependent endoplasmic reticulum-to-Golgi apparatus vesicular transport in the cytoplasm. Recent advances suggest that cytoplasmic PDCD6 is involved in the regulation of cytoskeletal dynamics and innate immune responses. Additionally, membranous PDCD6 participates in membrane repair through endosomal sorting complex required for transport complex-dependent membrane budding. Interestingly, extracellular vesicles are rich in PDCD6. Moreover, abnormal expression of PDCD6 is closely associated with many diseases, especially cancer. PDCD6 is therefore a multifaceted but pivotal protein in vivo. To gain a more comprehensive understanding of PDCD6 functions and to focus and stimulate PDCD6 research, this review summarizes key developments in its role in different subcellular compartments, processes, and pathologies.
Collapse
Affiliation(s)
- Yigao Zhu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Held A, Lapka J, Sargeant J, Hojanazarova J, Shaheen A, Galindo S, Madreiter-Sokolowski C, Malli R, Graier WF, Hay JC. Steady-state regulation of COPII-dependent secretory cargo sorting by inositol trisphosphate receptors, calcium, and penta EF hand proteins. J Biol Chem 2023; 299:105471. [PMID: 37979918 PMCID: PMC10750190 DOI: 10.1016/j.jbc.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.
Collapse
Affiliation(s)
- Aaron Held
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Jacob Lapka
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - John Sargeant
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Jennet Hojanazarova
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Alaa Shaheen
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Samuel Galindo
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Corina Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA.
| |
Collapse
|
6
|
Kim N, Kim TH, Kim C, Lee JE, Kang MG, Shin S, Jung M, Kim JS, Mun JY, Rhee HW, Park SY, Shin Y, Yoo JY. Intrinsically disordered region-mediated condensation of IFN-inducible SCOTIN/SHISA-5 inhibits ER-to-Golgi vesicle transport. Dev Cell 2023; 58:1950-1966.e8. [PMID: 37816329 DOI: 10.1016/j.devcel.2023.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023]
Abstract
Newly synthesized proteins in the endoplasmic reticulum (ER) are sorted by coat protein complex II (COPII) at the ER exit site en route to the Golgi. Under cellular stresses, COPII proteins become targets of regulation to control the transport. Here, we show that the COPII outer coat proteins Sec31 and Sec13 are selectively sequestered into the biomolecular condensate of SCOTIN/SHISA-5, which interferes with COPII vesicle formation and inhibits ER-to-Golgi transport. SCOTIN is an ER transmembrane protein with a cytosolic intrinsically disordered region (IDR), which is required and essential for the formation of condensates. Upon IFN-γ stimulation, which is a cellular condition that induces SCOTIN expression and condensation, ER-to-Golgi transport was inhibited in a SCOTIN-dependent manner. Furthermore, cancer-associated mutations of SCOTIN perturb its ability to form condensates and control transport. Together, we propose that SCOTIN impedes the ER-to-Golgi transport through its ability to form biomolecular condensates at the ER membrane.
Collapse
Affiliation(s)
- Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Tae-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Chaelim Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghee Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
7
|
Raote I, Saxena S, Malhotra V. Sorting and Export of Proteins at the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041258. [PMID: 35940902 PMCID: PMC10153803 DOI: 10.1101/cshperspect.a041258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in carriers that are formed by the concerted activities of cytoplasmic proteins in the coat protein complex II (COPII). COPII was first described in Saccharomyces cerevisiae and its basic functions are largely conserved throughout eukaryotes. The discovery of the TANGO1 (transport and Golgi organization 1) family of proteins is revealing insights into how cells can adapt COPII proteins to reorganize the ER exit site for the export of the most abundant and bulky molecules, collagens.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Sonashree Saxena
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Barcelona 08010, Spain
| |
Collapse
|
8
|
Moretti T, Kim K, Tuladhar A, Kim J. KLHL12 can form large COPII structures in the absence of CUL3 neddylation. Mol Biol Cell 2023; 34:br4. [PMID: 36652337 PMCID: PMC10011723 DOI: 10.1091/mbc.e22-08-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUL3-RING ubiquitin ligases (CRL3s) are involved in various cellular processes through different Bric-a-brac, Tramtrack, and Broad-complex (BTB)-domain proteins. KLHL12, a BTB-domain protein, is suggested to play an essential role in the export of large cargo molecules such as procollagen from the endoplasmic reticulum (ER). CRL3KLHL12 monoubiquitylates SEC31, leading to an increase in COPII vesicle dimension. Enlarged COPII vesicles can accommodate procollagen molecules. Thus, CRL3KLHL12 is essential for the assembly of large COPII structures and collagen secretion. CRL3s are activated by CUL3 neddylation. Here, we evaluated the importance of CUL3 neddylation in COPII assembly and collagen secretion. Unexpectedly, the assembly of large COPII-KLHL12 structures persisted and cellular collagen levels decreased on treatment with MLN4924, a potent inhibitor of NEDD8-activating enzyme. When we introduced mutations into KLHL12 at the CUL3 interface, these KLHL12 variants did not interact with neddylated CUL3, but one of them (Mut A) still supported large COPII-KLHL12 structures. Overexpression of wild-type KLHL12, but not Mut A, lowered cellular collagen levels most likely via lysosomal degradation. Our results suggest that CUL3 neddylation is not necessary for the formation of large COPII-KLHL12 structures, but active CRL3KLHL12 contributes to the maintenance of collagen levels in the cell.
Collapse
Affiliation(s)
- Tamara Moretti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Kyungho Kim
- Targeted Therapy Branch, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Astha Tuladhar
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
9
|
Seiler DK, Hay JC. Genetically encoded fluorescent tools: Shining a little light on ER-to-Golgi transport. Free Radic Biol Med 2022; 183:14-24. [PMID: 35272000 PMCID: PMC9097910 DOI: 10.1016/j.freeradbiomed.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
Abstract
Since the first fluorescent proteins (FPs) were identified and isolated over fifty years ago, FPs have become commonplace yet indispensable tools for studying the constitutive secretory pathway in live cells. At the same time, genetically encoded chemical tags have provided a new use for much older fluorescent dyes. Innovation has also produced several specialized methods to allow synchronous release of cargo proteins from the endoplasmic reticulum (ER), enabling precise characterization of sequential trafficking steps in the secretory pathway. Without the constant innovation of the researchers who design these tools to control, image, and quantitate protein secretion, major discoveries about ER-to-Golgi transport and later stages of the constitutive secretory pathway would not have been possible. We review many of the tools and tricks, some 25 years old and others brand new, that have been successfully implemented to study ER-to-Golgi transport in intact and living cells.
Collapse
Affiliation(s)
- Danette Kowal Seiler
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, MT, 59812, USA
| | - Jesse C Hay
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
10
|
Abstract
Constitutive vesicle trafficking is the default pathway used by all cells for movement of intracellular cargoes between subcellular compartments and in and out of the cell. Classically, constitutive trafficking was thought to be continuous and unregulated, in contrast to regulated secretion, wherein vesicles are stored intracellularly until undergoing synchronous membrane fusion following a Ca2+ signal. However, as shown in the literature reviewed here, many continuous trafficking steps can be up- or down-regulated by Ca2+, including several steps associated with human pathologies. Notably, we describe a series of Ca2+ pumps, channels, Ca2+-binding effector proteins, and their trafficking machinery targets that together regulate the flux of cargo in response to genetic alterations as well as baseline and agonist-dependent Ca2+ signals. Here, we review the most recent advances, organized by organellar location, that establish the importance of these components in trafficking steps. Ultimately, we conclude that Ca2+ regulates an expanding series of distinct mechanistic steps. Furthermore, the involvement of Ca2+ in trafficking is complex. For example, in some cases, the same Ca2+ effectors regulate surprisingly distinct trafficking steps, or even the same trafficking step with opposing influences, through binding to different target proteins.
Collapse
Affiliation(s)
- John Sargeant
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Jesse C Hay
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|