1
|
Sichrovsky M, Lacabanne D, Ruprecht JJ, Rana JJ, Stanik K, Dionysopoulou M, Sowton AP, King MS, Jones SA, Cooper L, Hardwick SW, Paris G, Chirgadze DY, Ding S, Fearnley IM, Palmer SM, Pardon E, Steyaert J, Leone V, Forrest LR, Tavoulari S, Kunji ERS. Molecular basis of pyruvate transport and inhibition of the human mitochondrial pyruvate carrier. SCIENCE ADVANCES 2025; 11:eadw1489. [PMID: 40249800 PMCID: PMC12007569 DOI: 10.1126/sciadv.adw1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
The mitochondrial pyruvate carrier transports pyruvate, produced by glycolysis from sugar molecules, into the mitochondrial matrix, as a crucial transport step in eukaryotic energy metabolism. The carrier is a drug target for the treatment of cancers, diabetes mellitus, neurodegeneration, and metabolic dysfunction-associated steatotic liver disease. We have solved the structure of the human MPC1L/MPC2 heterodimer in the inward- and outward-open states by cryo-electron microscopy, revealing its alternating access rocker-switch mechanism. The carrier has a central binding site for pyruvate, which contains an essential lysine and histidine residue, important for its ΔpH-dependent transport mechanism. We have also determined the binding poses of three chemically distinct inhibitor classes, which exploit the same binding site in the outward-open state by mimicking pyruvate interactions and by using aromatic stacking interactions.
Collapse
Affiliation(s)
- Maximilian Sichrovsky
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jessica J. Rana
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Klaudia Stanik
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Mariangela Dionysopoulou
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Alice P. Sowton
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Lee Cooper
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Shane M. Palmer
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Department of Biophysics and Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sotiria Tavoulari
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| |
Collapse
|
2
|
Maram L, Michael JM, Politte H, Srirama VS, Hadji A, Habibi M, Kelly MO, Brookheart RT, Finck BN, Hegazy L, McCommis KS, Elgendy B. Advancing mitochondrial therapeutics: Synthesis and pharmacological evaluation of pyrazole-based inhibitors targeting the mitochondrial pyruvate carrier. Eur J Med Chem 2025; 283:117150. [PMID: 39708766 PMCID: PMC11931974 DOI: 10.1016/j.ejmech.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Inhibition of mitochondrial pyruvate transport via the mitochondrial pyruvate carrier (MPC) has shown beneficial effects in treating metabolic diseases, certain cancers, various forms of neurodegeneration, and hair loss. These benefits arise either from the direct inhibition of mitochondrial pyruvate metabolism or from the metabolic rewiring when pyruvate entry is inhibited. However, current MPC inhibitors are either nonspecific or possess poor pharmacokinetic properties. To address this, approximately 50 pyrazole-based MPC inhibitors were synthesized to explore the structure-activity relationship for MPC inhibition, evaluated through inhibition of mitochondrial pyruvate respiration. These inhibitors were designed with increased steric hindrance around electron-deficient double bonds, allowing for refined structural modifications that reduce their potential to act as Michael acceptors. Additionally, the new MPC inhibitors directly inhibited stellate cell activation, indicating their potential as therapeutic candidates for metabolic dysfunction-associated steatohepatitis (MASH). Unlike the thiazolidinedione class of MPC inhibitors, these compounds did not activate the nuclear receptor PPARγ. Molecular modeling was conducted to explore interactions between these novel inhibitors and the MPC complex. We have identified the chemical determinants critical for MPC inhibition and successfully developed novel inhibitors that are potent, specific and possess excellent physicochemical properties, high solubility, and outstanding metabolic stability in human liver microsomes.
Collapse
Affiliation(s)
- Lingaiah Maram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA
| | - Jessica M Michael
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Henry Politte
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA
| | - Vaishnavi S Srirama
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Aymen Hadji
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA
| | - Mohammad Habibi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Meredith O Kelly
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rita T Brookheart
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Bahaa Elgendy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
3
|
Politte H, Maram L, Elgendy B. Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications. Biomolecules 2025; 15:223. [PMID: 40001526 PMCID: PMC11852594 DOI: 10.3390/biom15020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is a transmembrane protein complex critical for cellular energy metabolism, enabling the transport of pyruvate from the cytosol into the mitochondria, where it fuels the citric acid cycle. By regulating this essential entry point of carbon into mitochondrial metabolism, MPC is pivotal for maintaining cellular energy balance and metabolic flexibility. Dysregulation of MPC activity has been implicated in several metabolic disorders, including type 2 diabetes, obesity, and cancer, underscoring its potential as a therapeutic target. This review provides an overview of the MPC complex, examining its structural components, regulatory mechanisms, and biological functions. We explore the current understanding of transcriptional, translational, and post-translational modifications that modulate MPC function and highlight the clinical relevance of MPC dysfunction in metabolic and neurodegenerative diseases. Progress in the development of MPC-targeting therapeutics is discussed, with a focus on challenges in designing selective and potent inhibitors. Emphasis is placed on modern approaches for identifying novel inhibitors, particularly virtual screening and computational strategies. This review establishes a foundation for further research into the medicinal chemistry of MPC inhibitors, promoting advances in structure-based drug design to develop therapeutics for metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Henry Politte
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Lingaiah Maram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Bahaa Elgendy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Mitochondrial Dysfunction in Cardiac Disease: The Fort Fell. Biomolecules 2024; 14:1534. [PMID: 39766241 PMCID: PMC11673776 DOI: 10.3390/biom14121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Myocardial cells and the extracellular matrix achieve their functions through the availability of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on the balance between energy production and consumption. The energy produced is utilized in various forms, including kinetic, dynamic, and thermal energy. Although total energy remains nearly constant, the contribution of each form changes over time. Thermal energy increases, while dynamic and kinetic energy decrease, ultimately becoming insufficient to adequately support cardiac function. As a result, toxic byproducts, unfolded or misfolded proteins, free radicals, and other harmful substances accumulate within the myocardium. This leads to the failure of crucial processes such as myocardial contraction-relaxation coupling, ion exchange, cell growth, and regulation of apoptosis and necrosis. Consequently, both the micro- and macro-architecture of the heart are altered. Energy production and consumption depend on the heart's metabolic resources and the functional state of the cardiac structure, including cardiomyocytes, non-cardiomyocyte cells, and their metabolic and energetic behavior. Mitochondria, which are intracellular organelles that produce more than 95% of ATP, play a critical role in fulfilling all these requirements. Therefore, it is essential to gain a deeper understanding of their anatomy, function, and homeostatic properties.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Dimitrios Farmakis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
5
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024; 16:2678-2698. [PMID: 39468303 PMCID: PMC11554794 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
7
|
Hadfield CM, Walker JK, Arnatt C, McCommis KS. Computational structural prediction and chemical inhibition of the human mitochondrial pyruvate carrier protein heterodimer complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594520. [PMID: 39071381 PMCID: PMC11275797 DOI: 10.1101/2024.05.16.594520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mitochondrial pyruvate carrier (MPC) plays a role in numerous diseases including neurodegeneration, metabolically dependent cancers, and the development of insulin resistance. Several previous studies in genetic mouse models or with existing inhibitors suggest that inhibition of the MPC could be used as a viable therapeutic strategy in these diseases. However, the MPC's structure is unknown, making it difficult to screen for and develop therapeutically viable inhibitors. Currently known MPC inhibitors would make for poor drugs due to their poor pharmacokinetic properties, or in the case of the thiazolidinediones (TZDs), off-target specificity for peroxisome-proliferator activated receptor gamma (PPARγ) leads to unwanted side effects. In this study, we develop several structural models for the MPC heterodimer complex and investigate the chemical interactions required for the binding of these known inhibitors to MPC and PPARγ. Based on these models, the MPC most likely takes on outward-facing (OF) and inward-facing (IF) conformations during pyruvate transport, and inhibitors likely plug the carrier to inhibit pyruvate transport. Although some chemical interactions are similar between MPC and PPARγ binding, there is likely enough difference to reduce PPARγ specificity for future development of novel, more specific MPC inhibitors.
Collapse
Affiliation(s)
- Christy M. Hadfield
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| | - John K. Walker
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine
- Department of Chemistry, Saint Louis University
| | - Chris Arnatt
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine
- Department of Chemistry, Saint Louis University
| | - Kyle S. McCommis
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| |
Collapse
|
8
|
Radosavljevic T, Brankovic M, Samardzic J, Djuretić J, Vukicevic D, Vucevic D, Jakovljevic V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants (Basel) 2024; 13:906. [PMID: 39199152 PMCID: PMC11351122 DOI: 10.3390/antiox13080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction. Recent studies underscore the critical role of mitochondrial dysfunction in MASLD's progression. Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes and pharmacological interventions targeting mitochondrial processes. The FDA's approval of resmetirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While resmetirom represents progress, further research is essential to understand MASLD-related mitochondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators, alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD and identify more effective preventive and treatment strategies.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
9
|
Martino MR, Habibi M, Ferguson D, Brookheart RT, Thyfault JP, Meyer GA, Lantier L, Hughey CC, Finck BN. Disruption of hepatic mitochondrial pyruvate and amino acid metabolism impairs gluconeogenesis and endurance exercise capacity in mice. Am J Physiol Endocrinol Metab 2024; 326:E515-E527. [PMID: 38353639 PMCID: PMC11193532 DOI: 10.1152/ajpendo.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.
Collapse
Affiliation(s)
- Michael R Martino
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mohammad Habibi
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Daniel Ferguson
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rita T Brookheart
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - John P Thyfault
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Missouri, United States
| | - Gretchen A Meyer
- Department of Medicine, Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Brian N Finck
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
10
|
Gallo G, Rubattu S, Volpe M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int J Mol Sci 2024; 25:2667. [PMID: 38473911 DOI: 10.3390/ijms25052667] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial dysfunction, a feature of heart failure, leads to a progressive decline in bioenergetic reserve capacity, consisting in a shift of energy production from mitochondrial fatty acid oxidation to glycolytic pathways. This adaptive process of cardiomyocytes does not represent an effective strategy to increase the energy supply and to restore the energy homeostasis in heart failure, thus contributing to a vicious circle and to disease progression. The increased oxidative stress causes cardiomyocyte apoptosis, dysregulation of calcium homeostasis, damage of proteins and lipids, leakage of mitochondrial DNA, and inflammatory responses, finally stimulating different signaling pathways which lead to cardiac remodeling and failure. Furthermore, the parallel neurohormonal dysregulation with angiotensin II, endothelin-1, and sympatho-adrenergic overactivation, which occurs in heart failure, stimulates ventricular cardiomyocyte hypertrophy and aggravates the cellular damage. In this review, we will discuss the pathophysiological mechanisms related to mitochondrial dysfunction, which are mainly dependent on increased oxidative stress and perturbation of the dynamics of membrane potential and are associated with heart failure development and progression. We will also provide an overview of the potential implication of mitochondria as an attractive therapeutic target in the management and recovery process in heart failure.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, RM, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | | |
Collapse
|
11
|
Herzig S, Li L, Jiménez-Sánchez C, Martinou JC, Maechler P. Screening for new inhibitors of the human Mitochondrial Pyruvate Carrier and their effects on hepatic glucose production and diabetes. Biochim Biophys Acta Gen Subj 2023; 1867:130492. [PMID: 37871770 DOI: 10.1016/j.bbagen.2023.130492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The mitochondrial pyruvate carrier (MPC) is a protein complex composed of two subunits, MPC1 and MPC2. This carrier is at the interface between glycolysis and mitochondrial metabolism and plays an essential role in hepatic glucose production. METHODS Here we describe an in vitro screen for small molecule inhibitors of the MPC using a strain of Lactococcus lactis that has been engineered to co-express the two subunits of the human MPC and is able to import exogenous 14C-pyruvate. We then tested the top candidates for potential antidiabetic effects through the repression of gluconeogenesis. RESULTS By screening the Prestwick compound library of 1'200 drugs approved by the Food and Drug Administration for inhibitors of pyruvate uptake, twelve hit molecules were identified. In a secondary screen, the most potent inhibitors were found to inhibit pyruvate-driven oxygen consumption in mouse C2C12 muscle cells. Assessment of gluconeogenesis showed that Zaprinast, as well as the established MPC inhibitor UK5099, inhibited in vitro and in vivo hepatic glucose production. However, when tested acutely in mice without the administration of gluconeogenic substrates, MPC inhibitors raised blood glucose levels, pointing to liver-independent effects. Furthermore, chronic treatment with Zaprinast failed to correct hyperglycemia in both lean and obese diabetic mouse models. CONCLUSIONS New MPC inhibitors have been identified, showing inhibitory effects on hepatic glucose production. GENERAL SIGNIFICANCE For potential antidiabetic applications, MPC inhibitors should target the liver without undesired inhibition of mitochondrial pyruvate metabolism in the skeletal muscles or pancreatic beta-cells in order to avoid dual effects on glycemia.
Collapse
Affiliation(s)
- Sébastien Herzig
- Department of Molecular and Cellular Biology, University of Geneva, quai Ernest-Ansermet 30, 1205 Geneva, Switzerland
| | - Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, rue Michel-Servet 1, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva, 1206 Geneva, Switzerland
| | - Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, rue Michel-Servet 1, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva, 1206 Geneva, Switzerland
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, University of Geneva, quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, rue Michel-Servet 1, 1206 Geneva, Switzerland; Faculty Diabetes Center, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
12
|
Yiew NKH, Vazquez JH, Martino MR, Kennon-McGill S, Price JR, Allard FD, Yee EU, Layman AJ, James LP, McCommis KS, Finck BN, McGill MR. Hepatic pyruvate and alanine metabolism are critical and complementary for maintenance of antioxidant capacity and resistance to oxidative insult. Mol Metab 2023; 77:101808. [PMID: 37716594 PMCID: PMC10561123 DOI: 10.1016/j.molmet.2023.101808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVE Mitochondrial pyruvate is a critical intermediary metabolite in gluconeogenesis, lipogenesis, and NADH production. As a result, the mitochondrial pyruvate carrier (MPC) complex has emerged as a promising therapeutic target in metabolic diseases. Clinical trials are currently underway. However, recent in vitro data indicate that MPC inhibition diverts glutamine/glutamate away from glutathione synthesis and toward glutaminolysis to compensate for loss of pyruvate oxidation, possibly sensitizing cells to oxidative insult. Here, we explored this in vivo using the clinically relevant acetaminophen (APAP) overdose model of acute liver injury, which is driven by oxidative stress. METHODS We used pharmacological and genetic approaches to inhibit MPC2 and alanine aminotransferase 2 (ALT2), individually and concomitantly, in mice and cell culture models and determined the effects on APAP hepatotoxicity. RESULTS We found that MPC inhibition sensitizes the liver to APAP-induced injury in vivo only with concomitant loss of alanine aminotransferase 2 (ALT2). Pharmacological and genetic manipulation of neither MPC2 nor ALT2 alone affected APAP toxicity, but liver-specific double knockout (DKO) significantly worsened APAP-induced liver damage. Further investigation indicated that DKO impaired glutathione synthesis and increased urea cycle flux, consistent with increased glutaminolysis, and these results were reproducible in vitro. Finally, induction of ALT2 and post-treatment with dichloroacetate both reduced APAP-induced liver injury, suggesting new therapeutic avenues. CONCLUSIONS Increased susceptibility to APAP toxicity requires loss of both the MPC and ALT2 in vivo, indicating that MPC inhibition alone is insufficient to disrupt redox balance. Furthermore, the results from ALT2 induction and dichloroacetate in the APAP model suggest new metabolic approaches to the treatment of liver damage.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel H Vazquez
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael R Martino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefanie Kennon-McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jake R Price
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexander J Layman
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura P James
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
13
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
14
|
Bui CV, Boswell CW, Ciruna B, Rocheleau JV. Apollo-NADP + reveals in vivo adaptation of NADPH/NADP + metabolism in electrically activated pancreatic β cells. SCIENCE ADVANCES 2023; 9:eadi8317. [PMID: 37792934 PMCID: PMC10550227 DOI: 10.1126/sciadv.adi8317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Several genetically encoded sensors have been developed to study live cell NADPH/NADP+ dynamics, but their use has been predominantly in vitro. Here, we developed an in vivo assay using the Apollo-NADP+ sensor and microfluidic devices to measure endogenous NADPH/NADP+ dynamics in the pancreatic β cells of live zebrafish embryos. Flux through the pentose phosphate pathway, the main source of NADPH in many cell types, has been reported to be low in β cells. Thus, it is unclear how these cells compensate to meet NADPH demands. Using our assay, we show that pyruvate cycling is the main source of NADP+ reduction in β cells, with contributions from folate cycling after acute electrical activation. INS1E β cells also showed a stress-induced increase in folate cycling and further suggested that this cycling requires both increased glycolytic intermediates and cytosolic NAD+. Overall, we show in vivo application of the Apollo-NADP+ sensor and reveal that β cells are capable of adapting NADPH/NADP+ redox during stress.
Collapse
Affiliation(s)
- Cindy V. Bui
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Curtis W. Boswell
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan V. Rocheleau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Habibi M, Ferguson D, Eichler SJ, Chan MM, LaPoint A, Shew TM, He M, Lutkewitte AJ, Schilling JD, Cho KY, Patti GJ, Finck BN. Mitochondrial Pyruvate Carrier Inhibition Attenuates Hepatic Stellate Cell Activation and Liver Injury in a Mouse Model of Metabolic Dysfunction-associated Steatotic Liver Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528384. [PMID: 36824926 PMCID: PMC9949033 DOI: 10.1101/2023.02.13.528384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hepatic stellate cells (HSC) are non-parenchymal liver cells that produce extracellular matrix comprising fibrotic lesions in chronic liver diseases. Prior work demonstrated that mitochondrial pyruvate carrier (MPC) inhibitors suppress HSC activation and fibrosis in a mouse model of metabolic dysfunction-associated steatohepatitis (MASH). In the present study, pharmacologic or genetic inhibition of the MPC in HSC decreased expression of markers of activation in vitro. MPC knockdown also reduced the abundance of several intermediates of the TCA cycle, and diminished α-ketoglutarate played a key role in attenuating HSC activation by suppressing hypoxia inducible factor-1α signaling. On high fat diets, mice with HSC-specific MPC deletion exhibited reduced circulating transaminases, numbers of HSC, and hepatic expression of markers of HSC activation and inflammation compared to wild-type mice. These data suggest that MPC inhibition modulates HSC metabolism to attenuate activation and illuminate mechanisms by which MPC inhibitors could prove therapeutically beneficial for treating MASH.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Sophie J. Eichler
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Mandy M. Chan
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Andrew LaPoint
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Trevor M. Shew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| | - Joel D. Schilling
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Kevin Y. Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Gary J. Patti
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis
| |
Collapse
|
16
|
Martino MR, Habibi M, Ferguson D, Brookheart RT, Thyfault JP, Meyer GA, Lantier L, Hughey CC, Finck BN. Disruption of Hepatic Mitochondrial Pyruvate and Amino Acid Metabolism Impairs Gluconeogenesis and Endurance Exercise Capacity in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554345. [PMID: 37662392 PMCID: PMC10473655 DOI: 10.1101/2023.08.22.554345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Exercise robustly increases the glucose demands of skeletal muscle. This demand is met not only by muscle glycogenolysis, but also by accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting gluconeogenic efficiency and capacity on exercise performance by deleting hepatic mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or post-exercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in liver (DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of ²H/¹³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. The decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan crosstalk during exercise as described by the Cahill and Cori cycles.
Collapse
Affiliation(s)
- Michael R. Martino
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mohammad Habibi
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel Ferguson
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - Rita T. Brookheart
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - John P. Thyfault
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, MO
| | - Gretchen A. Meyer
- Department of Medicine, Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Curtis C. Hughey
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN
| | - Brian N. Finck
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
17
|
Tavoulari S, Sichrovsky M, Kunji ERS. Fifty years of the mitochondrial pyruvate carrier: New insights into its structure, function, and inhibition. Acta Physiol (Oxf) 2023; 238:e14016. [PMID: 37366179 PMCID: PMC10909473 DOI: 10.1111/apha.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The mitochondrial pyruvate carrier (MPC) resides in the mitochondrial inner membrane, where it links cytosolic and mitochondrial metabolism by transporting pyruvate produced in glycolysis into the mitochondrial matrix. Due to its central metabolic role, it has been proposed as a potential drug target for diabetes, non-alcoholic fatty liver disease, neurodegeneration, and cancers relying on mitochondrial metabolism. Little is known about the structure and mechanism of MPC, as the proteins involved were only identified a decade ago and technical difficulties concerning their purification and stability have hindered progress in functional and structural analyses. The functional unit of MPC is a hetero-dimer comprising two small homologous membrane proteins, MPC1/MPC2 in humans, with the alternative complex MPC1L/MPC2 forming in the testis, but MPC proteins are found throughout the tree of life. The predicted topology of each protomer consists of an amphipathic helix followed by three transmembrane helices. An increasing number of inhibitors are being identified, expanding MPC pharmacology and providing insights into the inhibitory mechanism. Here, we provide critical insights on the composition, structure, and function of the complex and we summarize the different classes of small molecule inhibitors and their potential in therapeutics.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Maximilian Sichrovsky
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
18
|
Colca JR, Tanis SP, Kletzien RF, Finck BN. Insulin sensitizers in 2023: lessons learned and new avenues for investigation. Expert Opin Investig Drugs 2023; 32:803-811. [PMID: 37755339 DOI: 10.1080/13543784.2023.2263369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION 'Insulin sensitizers' derived discoveries of the Takeda Company in 1970s. Pioglitazone remains the best in class with beneficial pleiotropic pharmacology, although use is limited by tolerability issues. Various attempts to expand out of this class assumed the primary molecular target was the transcription factor, PPARγ. Findings over the last 10 years have identified new targets of thiazolidinediones (TZDs) that should alter the drug discovery paradigm. AREAS COVERED We review structural classes of experimental insulin sensitizer drugs, some of which have attained limited approval in some markets. The TZD pioglitazone, originally approved in 1999 as a secondary treatment for type 2 diabetes, has demonstrated benefit in apparently diverse spectrums of disease from cardiovascular to neurological issues. New TZDs modulate a newly identified mitochondrial target (the mitochondrial pyruvate carrier) to reprogram metabolism and produce insulin sensitizing pharmacology devoid of tolerability issues. EXPERT OPINION Greater understanding of the mechanism of action of insulin sensitizing drugs can expand the rationale for the fields of treatment and potential for treatment combinations. This understanding can facilitate the registration and broader use of agents with that impact the pathophysiology that underlies chronic metabolic diseases as well as host responses to environmental insults including pathogens, insulin sensitizer, MPC, mitochondrial target, metabolic reprogramming, chronic and infectious disease.
Collapse
Affiliation(s)
| | | | | | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St Louis, Euclid Ave, MO, USA
| |
Collapse
|
19
|
Ferguson D, Eichler SJ, Yiew NKH, Colca JR, Cho K, Patti GJ, Shew TM, Lutkewitte AJ, Mukherjee S, McCommis KS, Niemi NM, Finck BN. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Mol Metab 2023; 70:101694. [PMID: 36801448 PMCID: PMC9989691 DOI: 10.1016/j.molmet.2023.101694] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE The mitochondrial pyruvate carrier (MPC) has emerged as a therapeutic target for treating insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). We evaluated whether MPC inhibitors (MPCi) might correct impairments in branched chain amino acid (BCAA) catabolism, which are predictive of developing diabetes and NASH. METHODS Circulating BCAA concentrations were measured in people with NASH and type 2 diabetes, who participated in a recent randomized, placebo-controlled Phase IIB clinical trial to test the efficacy and safety of the MPCi MSDC-0602K (EMMINENCE; NCT02784444). In this 52-week trial, patients were randomly assigned to placebo (n = 94) or 250 mg MSDC-0602K (n = 101). Human hepatoma cell lines and mouse primary hepatocytes were used to test the direct effects of various MPCi on BCAA catabolism in vitro. Lastly, we investigated how hepatocyte-specific deletion of MPC2 affects BCAA metabolism in the liver of obese mice and MSDC-0602K treatment of Zucker diabetic fatty (ZDF) rats. RESULTS In patients with NASH, MSDC-0602K treatment, which led to marked improvements in insulin sensitivity and diabetes, had decreased plasma concentrations of BCAAs compared to baseline while placebo had no effect. The rate-limiting enzyme in BCAA catabolism is the mitochondrial branched chain ketoacid dehydrogenase (BCKDH), which is deactivated by phosphorylation. In multiple human hepatoma cell lines, MPCi markedly reduced BCKDH phosphorylation and stimulated branched chain keto acid catabolism; an effect that required the BCKDH phosphatase PPM1K. Mechanistically, the effects of MPCi were linked to activation of the energy sensing AMP-dependent protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) kinase signaling cascades in vitro. BCKDH phosphorylation was reduced in liver of obese, hepatocyte-specific MPC2 knockout (LS-Mpc2-/-) mice compared to wild-type controls concomitant with activation of mTOR signaling in vivo. Finally, while MSDC-0602K treatment improved glucose homeostasis and increased the concentrations of some BCAA metabolites in ZDF rats, it did not lower plasma BCAA concentrations. CONCLUSIONS These data demonstrate novel cross talk between mitochondrial pyruvate and BCAA metabolism and suggest that MPC inhibition leads to lower plasma BCAA concentrations and BCKDH phosphorylation by activating the mTOR axis. However, the effects of MPCi on glucose homeostasis may be separable from its effects on BCAA concentrations.
Collapse
Affiliation(s)
- Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Sophie J Eichler
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Nicole K H Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Jerry R Colca
- Department of Biomedical Sciences, Western Michigan University School of Medicine, Kalamazoo, MI, Cirius Therapeutics, Kalamazoo, MI, United States
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, United States; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, United States
| | - Gary J Patti
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States; Department of Chemistry, Washington University in St. Louis, United States; Siteman Cancer Center, Washington University in St. Louis, United States; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, United States
| | - Trevor M Shew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Andrew J Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, United States
| | - Natalie M Niemi
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, United States
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States.
| |
Collapse
|
20
|
Aydemir D, Ulusu NN. The impact of the endocrine-disrupting chemicals on the glucose-6-phosphate dehydrogenase enzyme activity. Front Pharmacol 2023; 14:1133741. [PMID: 36992836 PMCID: PMC10040789 DOI: 10.3389/fphar.2023.1133741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
21
|
Laghezza A, Cerchia C, Genovese M, Leuci R, Pranzini E, Santi A, Brunetti L, Piemontese L, Tortorella P, Biswas A, Singh RP, Tambe S, Ca S, Pattnaik AK, Jayaprakash V, Paoli P, Lavecchia A, Loiodice F. A New Antidiabetic Agent Showing Short- and Long-Term Effects Due to Peroxisome Proliferator-Activated Receptor Alpha/Gamma Dual Agonism and Mitochondrial Pyruvate Carrier Inhibition. J Med Chem 2023; 66:3566-3587. [PMID: 36790935 DOI: 10.1021/acs.jmedchem.2c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A new series of analogues or derivatives of the previously reported PPARα/γ dual agonist LT175 allowed the identification of ligand 10, which was able to potently activate both PPARα and -γ subtypes as full and partial agonists, respectively. Docking studies were performed to provide a molecular explanation for this different behavior on the two different targets. In vivo experiments showed that this compound induced a significant reduction in blood glucose and lipid levels in an STZ-induced diabetic mouse model displaying no toxic effects on bone, kidney, and liver. By examining in depth the antihyperglycemic activity of 10, we found out that it produced a slight but significant inhibition of the mitochondrial pyruvate carrier, acting also through insulin-independent mechanisms. This is the first example of a PPARα/γ dual agonist reported to show this inhibitory effect representing, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Massimo Genovese
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Rosalba Leuci
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Erica Pranzini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Alice Santi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Leonardo Brunetti
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Suhas Tambe
- Adgyl Lifesciences Private Ltd., Bengaluru 560058, India
| | - Sudeep Ca
- Bioanalytical Section, Eurofins Advinus Biopharma Services India Pvt. Ltd., Bengaluru 560058, India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, "Drug Discovery" Laboratory, Università degli Studi di Napoli "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
22
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
23
|
McCommis KS, Finck BN. The Hepatic Mitochondrial Pyruvate Carrier as a Regulator of Systemic Metabolism and a Therapeutic Target for Treating Metabolic Disease. Biomolecules 2023; 13:261. [PMID: 36830630 PMCID: PMC9953669 DOI: 10.3390/biom13020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Pyruvate sits at an important metabolic crossroads of intermediary metabolism. As a product of glycolysis in the cytosol, it must be transported into the mitochondrial matrix for the energy stored in this nutrient to be fully harnessed to generate ATP or to become the building block of new biomolecules. Given the requirement for mitochondrial import, it is not surprising that the mitochondrial pyruvate carrier (MPC) has emerged as a target for therapeutic intervention in a variety of diseases characterized by altered mitochondrial and intermediary metabolism. In this review, we focus on the role of the MPC and related metabolic pathways in the liver in regulating hepatic and systemic energy metabolism and summarize the current state of targeting this pathway to treat diseases of the liver. Available evidence suggests that inhibiting the MPC in hepatocytes and other cells of the liver produces a variety of beneficial effects for treating type 2 diabetes and nonalcoholic steatohepatitis. We also highlight areas where our understanding is incomplete regarding the pleiotropic effects of MPC inhibition.
Collapse
Affiliation(s)
- Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Brian N. Finck
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
24
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|