1
|
Wang L, Gao K, Wang Z, Fan Z, Qin Y. 3-Furoic Acid from Sea-Derived Aspergillus luchuensis Hy-6 as a Valuable Lead Compound against Plant-Parasitic Nematodes in Cucumber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3468-3482. [PMID: 39886916 DOI: 10.1021/acs.jafc.4c08961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Root-knot nematodes pose a significant threat to crop growth and yield, thereby impacting global food security. Here, the sea-derived Aspergillus luchuensis hy-6 was identified as a producer of 3-furoic acid by liquid chromatography-mass spectrometry. Low doses of 3-furoic acid, an acidic compound with strong nematicidal activity, can reduce the motility, lifespan, and egg hatchability of nematodes in a dose-dependent manner. Additionally, 3-furoic acid was found to affect the chemotaxis of Meloidogyne incognita toward cucumber by decreasing the root's attractive activity to the nematodes. Metabolomic analyses indicated that the functional abnormalities in lipid metabolism may represent a critical molecular mechanism underlying severe metabolic dysfunction. Importantly, a significant enhancement in control efficacy was achieved through a simple structural modification, particularly with pent-4-en-1-yl furan-3-carboxylate (A1), which was superior to that of 3-furoic acid. These findings validated the potential of 3-furoic acid as a promising lead in the development of eco-friendly nematicides.
Collapse
Affiliation(s)
- Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhongwei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Li D, Bao LF, Lei HM, Zhang GK, Li GH, Zhao PJ. Bioactive Secondary Metabolites from Harposporium anguillulae Against Meloidogyne incognita. Microorganisms 2024; 12:2585. [PMID: 39770787 PMCID: PMC11676538 DOI: 10.3390/microorganisms12122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus Harposporium anguillulae YMF1.01751, with the expectation of discovering valuable Meloidogyne incognita biocontrol compounds. Based on results obtained by a liquid chromatograph coupled to a mass spectrometer (LC-MS) of crude extracts under five culture conditions and their nematicidal activity against M. incognita, corn meal agar (CMA) medium was determined as the scale-up fermentation medium. Twelve metabolites (1-12) were isolated from the fermentation products, and compound 1 was identified to be a new cyclic tetrapeptide. The activity assay results showed that phenylacetic acid (11) had good nematicidal activity at 400 μg/mL, and the mortalities of M. incognita were 89.76% and 96.05% at 12 and 24 h, respectively, while the mortality of canthin-6-one (2) against M. incognita was 44.26% at 72 h. In addition, the results of chemotaxis activity showed that 1-(1H-indol-3-yl)ethanone (10) possessed attraction activity towards M. incognita. At the tested concentrations, cyclo-(Arg-Pro) (4) and cyclo-(Val-Ile) (7) showed an avoidant response to M. incognita. This study provides insight into the nematode-active compounds of H. anguillulae origin and offers new opportunities for the development of RKN biocontrol products.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Ling-Feng Bao
- Institute of Tropical Eco-Agricultural Sciences of Yunnan Academy of Agricultural Sciences, Kunming 650091, China;
| | - Hong-Mei Lei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Guang-Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China; (D.L.); (H.-M.L.); (G.-K.Z.); (G.-H.L.)
| |
Collapse
|
3
|
Chen M, Huang Y, Ma L, Liu JJ, Cao Y, Zhao PJ, Mo MH. Cis-3-Indoleacrylic Acid: A Nematicidal Compound from Streptomyces youssoufiensis YMF3.862 as V-ATPase Inhibitor on Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24347-24358. [PMID: 39453611 DOI: 10.1021/acs.jafc.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The application of the bionematicides derived from microorganisms and their secondary metabolites represents a promising strategy for managing root-knot nematodes. In this study, a nematicidal compound, cis-3-indoleacrylic acid, was isolated from Streptomyces youssoufiensis YMF3.862. This compound caused Meloidogyne incognita juveniles to have swollen bodies with apparent cracks on the cuticle surface. The LC50 value of cis-3-indoleacrylic acid against juveniles was 16.31 μg/mL 24 h of post-treatment. Cis-3-indoleacrylic acid at 20 μg/mL significantly inhibited V-ATPase expression and remarkably decreased enzyme activity by 84.41%. As an inhibitor of V-ATPase, cis-3-indoleacrylic acid caused significant H+ accumulation in nematode bodies, resulting in lower intracellular pH values and higher extracellular pH values of M. incognita. Application of 50 μg/mL cis-3-indoleacrylic acid generated a 71.06% control efficiency against M. incognita on tomatoes. The combination results of this study indicated that cis-3-indoleacrylic acid can be developed as a natural nematicide for controlling M. incognita.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer 665000, P. R. China
| | - Yi Cao
- Guizhou Academy of Tobacco Agricultural Sciences, Guiyang 550081, P. R. China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
4
|
Yang ZY, Dai YC, Mo YQ, Wang JL, Ma L, Zhao PJ, Huang Y, Wang RB, Li W, Al-Rejaie SS, Liu JJ, Cao Y, Mo MH. Exploring the nematicidal mechanisms and control efficiencies of oxalic acid producing Aspergillus tubingensis WF01 against root-knot nematodes. Front Microbiol 2024; 15:1424758. [PMID: 39040900 PMCID: PMC11260745 DOI: 10.3389/fmicb.2024.1424758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and aims Root-knot nematodes (RKN; Meloidogyne spp.) are among the highly prevalent and significantly detrimental pathogens that cause severe economic and yield losses in crops. Currently, control of RKN primarily relies on the application of chemical nematicides but it has environmental and public health concerns, which open new doors for alternative methods in the form of biological control. Methods In this study, we investigated the nematicidal and attractive activities of an endophytic strain WF01 against Meloidogyne incognita in concentration-dependent experiments. The active nematicidal metabolite was extracted in the WF01 crude extract through the Sephadex column, and its structure was identified by nuclear magnetic resonance and mass spectrometry data. Results The strain WF01 was identified as Aspergillus tubingensis based on morphological and molecular characteristics. The nematicidal and attractive metabolite of A. tubingensis WF01 was identified as oxalic acid (OA), which showed solid nematicidal activity against M. incognita, having LC50 of 27.48 μg ml-1. The Nsy-1 of AWC and Odr-7 of AWA were the primary neuron genes for Caenorhabditis elegans to detect OA. Under greenhouse, WF01 broth and 200 μg ml-1 OA could effectively suppress the disease caused by M. incognita on tomatoes respectively with control efficiency (CE) of 62.5% and 70.83%, and promote plant growth. In the field, WF01-WP and 8% OA-WP formulations showed moderate CEs of 51.25%-61.47% against RKN in tomato and tobacco. The combined application of WF01 and OA resulted in excellent CEs of 66.83% and 69.34% toward RKN in tomato and tobacco, respectively. Furthermore, the application of WF01 broth or OA significantly suppressed the infection of J2s in tomatoes by upregulating the expression levels of the genes (PAL, C4H, HCT, and F5H) related to lignin synthesis, and strengthened root lignification. Conclusion Altogether, our results demonstrated that A. tubingensis WF01 exhibited multiple weapons to control RKN mediated by producing OA to lure and kill RKN in a concentration-dependent manner and strengthen root lignification. This fungus could serve as an environmental bio-nematicide for managing the diseases caused by RKN.
Collapse
Affiliation(s)
- Zhong-Yan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yuan-Chen Dai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yuan-Qi Mo
- Institute of Crop Variety Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jia-Lun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Rui-Bin Wang
- Shandong Dianlu Biotechnology Co., Ltd., Feixian, China
| | - Wei Li
- Yunnan Boshiao Biotechnology Co., Ltd., Kunming, China
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jian-Jin Liu
- Pu’er Corporation of Yunnan Tobacco Corporation, Pu’er, China
| | - Yi Cao
- Guizhou Academy of Tobacco Agricultural Sciences, Guiyang, China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Fan Z, Gao K, Wang L, Qin Y, Liu S, Xing R, Yu H, Li K, Li P. Sulfonamide modified chitosan oligosaccharide with high nematicidal activity against Meloidogyne incognita. Int J Biol Macromol 2024; 269:132131. [PMID: 38719017 DOI: 10.1016/j.ijbiomac.2024.132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
6
|
Xue Y, Li W, Li M, Ru N, Chen S, Jiu M, Feng H, Wei L, Daly P, Zhou D. Biological Control of a Root-Knot Nematode Meloidogyne incognita Infection of Tomato ( Solanum lycopersicum L.) by the Oomycete Biocontrol Agent Pythium oligandrum. J Fungi (Basel) 2024; 10:265. [PMID: 38667936 PMCID: PMC11051105 DOI: 10.3390/jof10040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
The biocontrol agent Pythium oligandrum, which is a member of the phylum Oomycota, can control diseases caused by a taxonomically wide range of plant pathogens, including fungi, bacteria, and oomycetes. However, whether P. oligandrum could control diseases caused by plant root-knot nematodes (RKNs) was unknown. We investigated a recently isolated P. oligandrum strain GAQ1, and the P. oligandrum strain CBS530.74, for the control of an RKN Meloidogyne incognita infection of tomato (Solanum lycopersicum L.). Initially, P. oligandrum culture filtrates were found to be lethal to M. incognita second-stage juveniles (J2s) with up to 84% mortality 24 h after treatment compared to 14% in the control group. Consistent with the lethality to M. incognita J2s, tomato roots treated with P. oligandrum culture filtrates reduced their attraction of nematodes, and the number of nematodes penetrating the roots was reduced by up to 78%. In a greenhouse pot trial, the P. oligandrum GAQ1 inoculation of tomato plants significantly reduced the gall number by 58% in plants infected with M. incognita. Notably, the P. oligandrum GAQ1 mycelial treatment significantly increased tomato plant height (by 36%), weight (by 27%), and root weight (by 48%). A transcriptome analysis of tomato seedling roots inoculated with the P. oligandrum GAQ1 strain identified ~2500 differentially expressed genes. The enriched GO terms and annotations in the up-regulated genes suggested a modulation of the plant hormone-signaling and defense-related pathways in response to P. oligandrum. In conclusion, our results support that P. oligandrum GAQ1 can serve as a potential biocontrol agent for M. incognita control in tomato. Multiple mechanisms appear to contribute to the biocontrol effect, including the direct inhibition of M. incognita, the potential priming of tomato plant defenses, and plant growth promotion.
Collapse
Affiliation(s)
- Yuwei Xue
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (W.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| | - Weishan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (W.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengnan Li
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 471023, China
| | - Ningchen Ru
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing 210095, China
| | - Min Jiu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (W.L.)
| | - Hui Feng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| |
Collapse
|
7
|
Wang JY, Li QY, Ren L, Guo C, Qu JP, Gao Z, Wang HF, Zhang Q, Zhou B. Transcriptomic and physiological analysis of the effect of octanoic acid on Meloidogyne incognita. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105432. [PMID: 37247998 DOI: 10.1016/j.pestbp.2023.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Root knot nematodes are the most devastating root pathogens, causing severe damage and serious economic losses to agriculture worldwide. Octanoic acid has been reported as one of the nematicides, and its mode of action is not fully understood. The main objective of this study was to elucidate the effect of octanoic acid on Meloidogyne incognita by transcriptomic analysis combined with physiological and biochemical assays. In the toxicity assays with octanoic acid, the threshold concentration with nematicidal activity and the maximum concentration to which nematodes could respond were 0.03 μL/mL and 0.08 μL/mL respectively. Microscopic observation combined with protein and carbohydrates assays confirmed that the structure of the second-stage juveniles (J2s) was severely disrupted after 72 h of immersion in octanoic acid. Transcriptome analysis has shown that octanoic acid can interfere with the nematode energy metabolism, lifespan and signaling. Although the effects are multifaceted, the findings strongly point to the cuticle, lysosomes, and extracellular regions and spaces as the primary targets for octanoic acid. In addition, nematodes can withstand the negative effects of low concentration of octanoic acid to some extent by up-regulating the defense enzyme system and heterologous metabolic pathways. These findings will help us to explore the nematicidal mechanism of octanoic acid and provide important target genes for the development of new nematicides in the future.
Collapse
Affiliation(s)
- Jian-Yu Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Qingdao Zipnow Agricultural Technology Co., Ltd, Qing'dao 266000, China
| | - Qiu-Yue Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Li Ren
- College of Resources and Environmental Sciences, China Agricultural University, Bei'jing 100193, China
| | - Cheng Guo
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jian-Ping Qu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Hui-Fang Wang
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Hai' kou 571100, China.
| | - Qian Zhang
- Shandong Institute of Pomology, Tai'an 271018, China.
| | - Bo Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, Tai'an 271018, China.
| |
Collapse
|
8
|
Hao X, Chen J, Li Y, Liu X, Li Y, Wang B, Cao J, Gu Y, Ma W, Ma L. Molecular Defense Response of Bursaphelenchus xylophilus to the Nematophagous Fungus Arthrobotrys robusta. Cells 2023; 12:cells12040543. [PMID: 36831210 PMCID: PMC9953903 DOI: 10.3390/cells12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Bursaphelenchus xylophilus causes pine wilt disease, which poses a serious threat to forestry ecology around the world. Microorganisms are environmentally friendly alternatives to the use of chemical nematicides to control B. xylophilus in a sustainable way. In this study, we isolated a nematophagous fungus-Arthrobotrys robusta-from the xylem of diseased Pinus massoniana. The nematophagous activity of A. robusta against the PWNs was observed after just 6 h. We found that B. xylophilus entered the trap of A. robusta at 24 h, and the nervous system and immunological response of B. xylophilus were stimulated by metabolites that A. robusta produced. At 30 h of exposure to A. robusta, B. xylophilus exhibited significant constriction, and we were able to identify xenobiotics. Bursaphelenchus xylophilus activated xenobiotic metabolism, which expelled the xenobiotics from their bodies, by providing energy through lipid metabolism. When PWNs were exposed to A. robusta for 36 h, lysosomal and autophagy-related genes were activated, and the bodies of the nematodes underwent disintegration. Moreover, a gene co-expression pattern network was constructed by WGCNA and Cytoscape. The gene co-expression pattern network suggested that metabolic processes, developmental processes, detoxification, biological regulation, and signaling were influential when the B. xylophilus specimens were exposed to A. robusta. Additionally, bZIP transcription factors, ankyrin, ATPases, innexin, major facilitator, and cytochrome P450 played critical roles in the network. This study proposes a model in which mobility improved whenever B. xylophilus entered the traps of A. robusta. The model will provide a solid foundation with which to understand the molecular and evolutionary mechanisms underlying interactions between nematodes and nematophagous fungi. Taken together, these findings contribute in several ways to our understanding of B. xylophilus exposed to microorganisms and provide a basis for establishing an environmentally friendly prevention and control strategy.
Collapse
Affiliation(s)
- Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Xuefeng Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Hangzhou 310028, China
| | - Jingxin Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yaru Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|