1
|
Ren H, Shen X. Multi-omics reveals the hepatic metabolic mechanism of neurological symptoms caused by selenium exposure in Przewalski's gazelle (Procapra przewalskii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126341. [PMID: 40316242 DOI: 10.1016/j.envpol.2025.126341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neurological symptoms resulting from selenium(Se) exposure significantly impact the health and conservation of Przewalski's gazelle. In this study, we performed proteomic and metabolomic analyses of the liver in Przewalski's gazelle for the first time, aiming to reveal the hepatic metabolic mechanisms underlying the neurological symptoms caused by Se exposure. We identified 89 differentially expressed proteins and 30 metabolites with altered regulation. Using multi-omics integrated analysis, we identified a neurofunctional regulation network composed of three metabolic pathways, with (S)-3-amino-2-methylpropionate transaminase being the key enzyme in the regulatory network. Molecular docking revealed that the binding of selenocysteine to (S)-3-amino-2-methylpropionate transaminase may act as a key factor in activating this regulatory network. Consequently, these findings provide important insights into the molecular mechanisms of neurological symptoms caused by Se exposure and have significant implications for the conservation in Przewalski's gazelle.
Collapse
Affiliation(s)
- Hong Ren
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaoyun Shen
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; Rural Revitalization Project Center, Guizhou Department of Agriculture and Rural Affairs, Guiyang, 550000, China.
| |
Collapse
|
2
|
Pu S, Cheng T, Cheng H. Advances in RNA editing in hematopoiesis and associated malignancies. Blood 2025; 145:2424-2438. [PMID: 39869834 DOI: 10.1182/blood.2024027379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the adenosine deaminase acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs, affecting their functions. RNA editing detection is now so sophisticated that we can achieve a high level of accuracy and sensitivity to identify low-abundance edited events. Consequently, A-to-I editing has been implicated in various biological processes, including immune and stress responses, cancer progression, and stem cell fate determination. In particular, a crucial role for this process has been recently reported in hematopoietic cell development and hematologic malignancy progression. Results from genetic mouse models have demonstrated the impact of ADARs' catalytic activity on hematopoietic cells, complemented by insights from human cell studies. Meanwhile, clinical studies have implicated ADAR enzymes and RNA editing events in hematologic malignancies and highlighted their potential as prognostic indicators. In this review, we outline the regulatory mechanisms of RNA editing in both normal hematopoiesis and hematologic malignancies. We then speculate on how targeting ADAR expression and site-specific RNA substrates might serve as a therapeutic avenue for affected patients.
Collapse
Affiliation(s)
- Shuangshuang Pu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
Modestov A, Buzdin A, Suntsova M. Unveiling RNA Editing by ADAR and APOBEC Protein Gene Families. FRONT BIOSCI-LANDMRK 2025; 30:26298. [PMID: 40302320 DOI: 10.31083/fbl26298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 05/02/2025]
Abstract
RNA editing is a crucial post-transcriptional modification that alters the transcriptome and proteome and affects many cellular processes, including splicing, microRNA specificity, stability of RNA molecules, and protein structure. Enzymes from the adenosine deaminase acting on RNA (ADAR) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) protein families mediate RNA editing and can alter a variety of non-coding and coding RNAs, including all regions of mRNA molecules, leading to tumor development and progression. This review provides novel insights into the potential use of RNA editing parameters, such as editing levels, expression of ADAR and APOBEC genes, and specifically edited genes, as biomarkers for cancer progression, distinguishing it from previous studies that focused on isolated aspects of RNA editing mechanisms. The methodological section offers clues to accelerate high-throughput analysis of RNA or DNA sequencing data for the identification of RNA editing events.
Collapse
Affiliation(s)
- Alexander Modestov
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
| | - Anton Buzdin
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Maria Suntsova
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Se Ha Jang
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Ji Yun Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea.
| |
Collapse
|
5
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Sharma B, Torres MM, Rodriguez S, Gangwani L, Kumar S. MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons. Neural Regen Res 2024; 19:2698-2707. [PMID: 38595288 PMCID: PMC11168514 DOI: 10.4103/nrr.nrr-d-23-01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00026/figure1/v/2024-04-08T165401Z/r/image-tiff Gamma-aminobutyric acid (GABA)ergic neurons, the most abundant inhibitory neurons in the human brain, have been found to be reduced in many neurological disorders, including Alzheimer's disease and Alzheimer's disease-related dementia. Our previous study identified the upregulation of microRNA-502-3p (miR-502-3p) and downregulation of GABA type A receptor subunit α-1 in Alzheimer's disease synapses. This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function. In vitro studies were performed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs. In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunit α-1 mRNA. Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunit α-1 gene and suppresses the luciferase activity. Furthermore, quantitative reverse transcription-polymerase chain reaction, miRNA in situ hybridization, immunoblotting, and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunit α-1 level, while suppression of miR-502-3p increased the level of GABA type A receptor subunit α-1 protein. Notably, as a result of the overexpression of miR-502-3p, cell viability was found to be reduced, and the population of necrotic cells was found to be increased. The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney (HEK) recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function, suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function. Additionally, the levels of proteins associated with Alzheimer's disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression. The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p. We propose that micro-RNA, in particular miR-502-3p, could be a potential therapeutic target to modulate GABAergic synapse function in neurological disorders, including Alzheimer's disease and Alzheimer's disease-related dementia.
Collapse
Affiliation(s)
- Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melissa M. Torres
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sheryl Rodriguez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Laxman Gangwani
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
7
|
Lozano-Velasco E, Garcia-Padilla C, Carmona-Garcia M, Gonzalez-Diaz A, Arequipa-Rendon A, Aranega AE, Franco D. MEF2C Directly Interacts with Pre-miRNAs and Distinct RNPs to Post-Transcriptionally Regulate miR-23a-miR-27a-miR-24-2 microRNA Cluster Member Expression. Noncoding RNA 2024; 10:32. [PMID: 38804364 PMCID: PMC11130849 DOI: 10.3390/ncrna10030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early development of several cell types, including muscle cells. Over the last decade, a novel layer of complexity modulating gene regulation has emerged as non-coding RNAs have been identified, impacting both transcriptional and post-transcriptional regulation. microRNAs represent the most studied and abundantly expressed subtype of small non-coding RNAs, and their functional roles have been widely documented. On the other hand, our knowledge of the transcriptional and post-transcriptional regulatory mechanisms that drive microRNA expression is still incipient. We recently demonstrated that MEF2C is able to transactivate the long, but not short, regulatory element upstream of the miR-23a-miR-27a-miR-24-2 transcriptional start site. However, MEF2C over-expression and silencing, respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 mature cluster members without affecting pri-miRNA expression levels, thus supporting additional MEF2C-driven regulatory mechanisms. Within this study, we demonstrated a complex post-transcriptional regulatory mechanism directed by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster members, distinctly involving different domains of the MEF2C transcription factor and the physical interaction with pre-miRNAs and Ksrp, HnRNPa3 and Ddx17 transcripts.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Miguel Carmona-Garcia
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Alba Gonzalez-Diaz
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Angela Arequipa-Rendon
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
8
|
Yang M, Jiang J, Ren R, Gao N, He J, Zhang Y. Role of ADAR1 on Proliferation and Differentiation in Porcine Preadipocytes. Animals (Basel) 2024; 14:1201. [PMID: 38672349 PMCID: PMC11047480 DOI: 10.3390/ani14081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Recent research has identified ADAR1 as a participant in the regulation of lipid accumulation in mice. However, there are no reports on the roles of ADAR1 in proliferation, apoptosis and differentiation of porcine preadipocytes. In this study, we investigated the role of ADAR1 in differentiation, proliferation and apoptosis of porcine preadipocytes using CCK-8, EdU staining, cell cycle detection, RT-qPCR, Western blot, a triglyceride assay and Oil Red O staining. The over-expression of ADAR1 significantly promoted proliferation but inhibited the differentiation and apoptosis of porcine preadipocytes. The inhibition of ADAR1 had the opposite effect on the proliferation, differentiation and apoptosis of porcine preadipocytes with over-expressed ADAR1. Then, the regulation mechanisms of ADAR1 on preadipocyte proliferation were identified using RNA-seq, and 197 DEGs in response to ADAR1 knockdown were identified. The MAPK signaling pathway is significantly enriched, indicating its importance in mediating fat accumulation regulated by ADAR1. The study's findings will aid in uncovering the mechanisms that regulate fat accumulation through ADAR1.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Jun Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Ruimin Ren
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| |
Collapse
|
9
|
Bernal YA, Blanco A, Sagredo EA, Oróstica K, Alfaro I, Marcelain K, Armisén R. A Comprehensive Analysis of the Effect of A>I(G) RNA-Editing Sites on Genotoxic Drug Response and Progression in Breast Cancer. Biomedicines 2024; 12:728. [PMID: 38672084 PMCID: PMC11048297 DOI: 10.3390/biomedicines12040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Dysregulated A>I(G) RNA editing, which is mainly catalyzed by ADAR1 and is a type of post-transcriptional modification, has been linked to cancer. A low response to therapy in breast cancer (BC) is a significant contributor to mortality. However, it remains unclear if there is an association between A>I(G) RNA-edited sites and sensitivity to genotoxic drugs. To address this issue, we employed a stringent bioinformatics approach to identify differentially RNA-edited sites (DESs) associated with low or high sensitivity (FDR 0.1, log2 fold change 2.5) according to the IC50 of PARP inhibitors, anthracyclines, and alkylating agents using WGS/RNA-seq data in BC cell lines. We then validated these findings in patients with basal subtype BC. These DESs are mainly located in non-coding regions, but a lesser proportion in coding regions showed predicted deleterious consequences. Notably, some of these DESs are previously reported as oncogenic variants, and in genes related to DNA damage repair, drug metabolism, gene regulation, the cell cycle, and immune response. In patients with BC, we uncovered DESs predominantly in immune response genes, and a subset with a significant association (log-rank test p < 0.05) between RNA editing level in LSR, SMPDL3B, HTRA4, and LL22NC03-80A10.6 genes, and progression-free survival. Our findings provide a landscape of RNA-edited sites that may be involved in drug response mechanisms, highlighting the value of A>I(G) RNA editing in clinical outcomes for BC.
Collapse
Affiliation(s)
- Yanara A. Bernal
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Alejandro Blanco
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Eduardo A. Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91 Stockholm, Sweden;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Science for Life Laboratory, SE-171 65 Solna, Sweden
| | - Karen Oróstica
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile;
| | - Ivan Alfaro
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Centro de Prevención y Control de Cáncer (CECAN), Universidad de Chile, Santiago 8380453, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| |
Collapse
|
10
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Lau KEH, Nguyen NT, Kesavan JC, Langa E, Fanning K, Brennan GP, Sanz-Rodriguez A, Villegas-Salmerón J, Yan Y, Venø MT, Mills JD, Rosenow F, Bauer S, Kjems J, Henshall DC. Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy. Brain Commun 2024; 6:fcad355. [PMID: 38204971 PMCID: PMC10781512 DOI: 10.1093/braincomms/fcad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.
Collapse
Affiliation(s)
- Kelvin E How Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jaideep C Kesavan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Kevin Fanning
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway H91 TK33, Ireland
| | - Yan Yan
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St.Peter SL9 0RJ, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Felix Rosenow
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Sebastian Bauer
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
12
|
Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer's disease: Focus on microRNAs. Ageing Res Rev 2023; 92:102123. [PMID: 37967653 DOI: 10.1016/j.arr.2023.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease characterized by the loss of cognitive function, confusion, and memory deficit. Accumulation of abnormal proteins, amyloid beta (Aß), and phosphorylated Tau (p-tau) forms plaques and tangles that deteriorate synapse function, resulting in neurodegeneration and cognitive decline in AD. The human brain is composed of different types of neurons and/or synapses that are functionally defective in AD. The GABAergic synapse, the most abundant inhibitory neuron in the human brain was found to be dysfunctional in AD and contributes to disrupting neurological function. This study explored the types of GABA receptors associated with neurological dysfunction and various biological and environmental factors that cause GABAergic neuron dysfunction in AD, such as Aβ, p-tau, aging, sex, astrocytes, microglia, APOE, mental disorder, diet, physical activity, and sleep. Furthermore, we explored the role of microRNAs (miRNAs) in the regulation of GABAergic synapse function in neurological disorders and AD states. We also discuss the molecular mechanisms underlying GABAergic synapse dysfunction with a focus on miR-27b, miR-30a, miR-190a/b, miR-33, miR-51, miR-129-5p, miR-376-3p, miR-376c, miR-30b and miR-502-3p. The purpose of our article is to highlight the recent research on miRNAs affecting the regulation of GABAergic synapse function and factors that contribute to the progression of AD.
Collapse
Affiliation(s)
- Jazmin Rivera
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melissa M Torres
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
13
|
Li S, Huang Q, Yang Q, Peng X, Wu Q. MicroRNAs as promising therapeutic agents: A perspective from acupuncture. Pathol Res Pract 2023; 248:154652. [PMID: 37406378 DOI: 10.1016/j.prp.2023.154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
MicroRNAs (miRNAs) are gaining recognition as potential therapeutic agents due to their small size, ability to target a wide range of genes, and significant role in disease progression. However, despite their promising potential, nearly half of the miRNA drugs developed for therapeutic purposes have been discontinued or put on hold, and none have advanced to phase III clinical trials. The development of miRNA therapeutics has faced obstacles such as difficulties in validating miRNA targets, conflicting evidence regarding competition and saturation effects, challenges in miRNA delivery, and determining appropriate dosages. These hurdles primarily arise from the intricate functional complexity of miRNAs. Acupuncture, a distinct, complementary therapy, offers a promising avenue to overcome these barriers, particularly by addressing the fundamental issue of preserving functional complexity through acupuncture regulatory networks. The acupuncture regulatory network consists of three main components: the acupoint network, the neuro-endocrine-immune (NEI) network, and the disease network. These networks represent the processes of information transformation, amplification, and conduction that occur during acupuncture. Notably, miRNAs serve as essential mediators and shared biological language within these interconnected networks. Harnessing the therapeutic potential of acupuncture-derived miRNAs can help reduce the time and economic resources required for miRNA drug development and alleviate the current developmental challenges miRNA therapeutics face. This review provides an interdisciplinary perspective by summarizing the interactions between miRNAs, their targets, and the three acupuncture regulatory networks mentioned earlier. The aim is to illuminate the challenges and opportunities in developing miRNA therapeutics. This review paper presents a comprehensive overview of miRNAs, their interactions with acupuncture regulatory networks, and their potential as therapeutic agents. By bridging the miRNA research and acupuncture fields, we aim to offer valuable insights into the obstacles and prospects of developing miRNA therapeutics.
Collapse
Affiliation(s)
- Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qianhui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qingqing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xiaohua Peng
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|