1
|
Bilger R, Migur A, Wulf A, Steglich C, Urlaub H, Hess WR. A type III-Dv CRISPR-Cas system is controlled by the transcription factor RpaB and interacts with the DEAD-box RNA helicase CrhR. Cell Rep 2024; 43:114485. [PMID: 38996066 DOI: 10.1016/j.celrep.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
How CRISPR-Cas systems defend bacteria and archaea against invading genetic elements is well understood, but less is known about their regulation. In the cyanobacterium Synechocystis sp. PCC 6803, the expression of one of the three different CRISPR-Cas systems responds to changes in environmental conditions. The cas operon promoter of this system is controlled by the light- and redox-responsive transcription factor RpaB binding to an HLR1 motif, resulting in transcriptional activation at low light intensities. However, the strong promoter that drives transcription of the cognate repeat-spacer array is not controlled by RpaB. Instead, the leader transcript is bound by the redox-sensitive RNA helicase CrhR. Crosslinking coupled with mass spectrometry analysis and site-directed mutagenesis revealed six residues involved in the CrhR-RNA interaction, with C371 being critically important. Thus, the expression of a type III-Dv CRISPR-Cas system is linked to the redox status of the photosynthetic cell at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Raphael Bilger
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Angela Migur
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Alexander Wulf
- Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Centre, 37075 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Claudia Steglich
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Henning Urlaub
- Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Centre, 37075 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
2
|
Locke AJ, Abou Farraj R, Tran C, Zeinali E, Mashayekhi F, Ali JYH, Glover JNM, Ismail IH. The role of RNF138 in DNA end resection is regulated by ubiquitylation and CDK phosphorylation. J Biol Chem 2024; 300:105709. [PMID: 38309501 PMCID: PMC10910129 DOI: 10.1016/j.jbc.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Tran
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Yasser Hafez Ali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Whitman BT, Wang Y, Murray CRA, Glover MJN, Owttrim GW. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2023; 89:e0001523. [PMID: 36920190 PMCID: PMC10132119 DOI: 10.1128/aem.00015-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Compartmentalization of macromolecules into discrete non-lipid-bound bodies by liquid-liquid phase separation (LLPS) is a well-characterized regulatory mechanism frequently associated with the cellular stress response in eukaryotes. In contrast, the formation and importance of similar complexes is just becoming evident in bacteria. Here, we identify LLPS as the mechanism by which the DEAD-box RNA helicase, cyanobacterial RNA helicase redox (CrhR), compartmentalizes into dynamic membraneless organelles in a temporal and spatial manner in response to abiotic stress in the cyanobacterium Synechocystis sp. strain PCC 6803. Stress conditions induced CrhR to form a single crescent localized exterior to the thylakoid membrane, indicating that this region is a crucial domain in the cyanobacterial stress response. These crescents rapidly dissipate upon alleviation of the stress conditions. Furthermore, CrhR aggregation was mediated by LLPS in an RNA-dependent reaction. We propose that dynamic CrhR condensation performs crucial roles in RNA metabolism, enabling rapid adaptation of the photosynthetic apparatus to environmental stresses. These results expand our understanding of the role that functional compartmentalization of RNA helicases and thus RNA processing in membraneless organelles by LLPS-mediated protein condensation performs in the bacterial response to environmental stress. IMPORTANCE Oxygen-evolving photosynthetic cyanobacteria evolved ~3 billion years ago, performing fundamental roles in the biogeochemical evolution of the early Earth and continue to perform fundamental roles in nutrient cycling and primary productivity today. The phylum consists of diverse species that flourish in heterogeneous environments. A prime driver for survival is the ability to alter photosynthetic performance in response to the shifting environmental conditions these organisms continuously encounter. This study demonstrated that diverse abiotic stresses elicit dramatic changes in localization and structural organization of the RNA helicase CrhR associated with the photosynthetic thylakoid membrane. These dynamic changes, mediated by a liquid-liquid phase separation (LLPS)-mediated mechanism, reveal a novel mechanism by which cyanobacteria can compartmentalize the activity of ribonucleoprotein complexes in membraneless organelles. The results have significant consequences for understanding bacterial adaptation and survival in response to changing environmental conditions.
Collapse
Affiliation(s)
- Brendan T. Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R. A. Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J. N. Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|