1
|
Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nat Rev Mol Cell Biol 2025; 26:104-122. [PMID: 39362999 PMCID: PMC11772106 DOI: 10.1038/s41580-024-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Baral J, Bhattacharje G, Dash S, Samanta D, Hinde E, Rouiller I, Das AK. In silico and in vitro characterization of the mycobacterial protein Ku to unravel its role in non-homologous end-joining DNA repair. Int J Biol Macromol 2024; 278:134584. [PMID: 39122073 DOI: 10.1016/j.ijbiomac.2024.134584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Non-homologous end-joining (NHEJ) stands as a pivotal DNA repair pathway crucial for the survival and persistence of Mycobacterium tuberculosis (Mtb) during its dormant, non-replicating phase, a key aspect of its long-term resilience. Mycobacterial NHEJ is a remarkably simple two-component system comprising the rate-limiting DNA binding protein Ku (mKu) and Ligase D. To elucidate mKu's role in NHEJ, we conducted a series of in silico and in vitro experiments. Molecular dynamics simulations and in vitro assays revealed that mKu's DNA binding stabilizes both the protein and DNA, while also shielding DNA ends from exonuclease degradation. Surface plasmon resonance (SPR) and electrophoretic mobility shift assays (EMSA) demonstrated mKu's robust affinity for linear double-stranded DNA (dsDNA), showing positive cooperativity for DNA substrates of 40 base pairs or longer, and its ability to slide along DNA strands. Moreover, analytical ultracentrifugation, size exclusion chromatography, and negative stain electron microscopy (EM) unveiled mKu's unique propensity to form higher-order oligomers exclusively with DNA, suggesting a potential role in mycobacterial NHEJ synapsis. This comprehensive characterization sheds new light on mKu's function within the Mtb NHEJ repair pathway. Targeting this pathway may thus impede the pathogen's ability to persist in its latent state within the host for prolonged periods.
Collapse
Affiliation(s)
- Joydeep Baral
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India; School of Physics, University of Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gourab Bhattacharje
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sagarika Dash
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Victoria, Australia.
| | - Isabelle Rouiller
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
3
|
Wojtaszek JL, Williams RS. From the TOP: Formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair (Amst) 2024; 142:103751. [PMID: 39180935 PMCID: PMC11404304 DOI: 10.1016/j.dnarep.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
4
|
Noireterre A, Stutz F. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. DNA Repair (Amst) 2024; 139:103691. [PMID: 38744091 DOI: 10.1016/j.dnarep.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland.
| |
Collapse
|
5
|
van Sluis M, Yu Q, van der Woude M, Gonzalo-Hansen C, Dealy SC, Janssens RC, Somsen HB, Ramadhin AR, Dekkers DHW, Wienecke HL, Demmers JJPG, Raams A, Davó-Martínez C, Llerena Schiffmacher DA, van Toorn M, Häckes D, Thijssen KL, Zhou D, Lammers JG, Pines A, Vermeulen W, Pothof J, Demmers JAA, van den Berg DLC, Lans H, Marteijn JA. Transcription-coupled DNA-protein crosslink repair by CSB and CRL4 CSA-mediated degradation. Nat Cell Biol 2024; 26:770-783. [PMID: 38600236 PMCID: PMC11098752 DOI: 10.1038/s41556-024-01394-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.
Collapse
Affiliation(s)
- Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qing Yu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shannon C Dealy
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hedda B Somsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannah Lena Wienecke
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris J P G Demmers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith G Lammers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris Pothof
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Mirsanaye AS, Hoffmann S, Weisser M, Mund A, Lopez Mendez B, Typas D, van den Boom J, Benedict B, Hendriks IA, Nielsen ML, Meyer H, Duxin JP, Montoya G, Mailand N. VCF1 is a p97/VCP cofactor promoting recognition of ubiquitylated p97-UFD1-NPL4 substrates. Nat Commun 2024; 15:2459. [PMID: 38503733 PMCID: PMC10950897 DOI: 10.1038/s41467-024-46760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
The hexameric AAA+ ATPase p97/VCP functions as an essential mediator of ubiquitin-dependent cellular processes, extracting ubiquitylated proteins from macromolecular complexes or membranes by catalyzing their unfolding. p97 is directed to ubiquitylated client proteins via multiple cofactors, most of which interact with the p97 N-domain. Here, we discover that FAM104A, a protein of unknown function also named VCF1 (VCP/p97 nuclear Cofactor Family member 1), acts as a p97 cofactor in human cells. Detailed structure-function studies reveal that VCF1 directly binds p97 via a conserved α-helical motif that recognizes the p97 N-domain with unusually high affinity, exceeding that of other cofactors. We show that VCF1 engages in joint p97 complex formation with the heterodimeric primary p97 cofactor UFD1-NPL4 and promotes p97-UFD1-NPL4-dependent proteasomal degradation of ubiquitylated substrates in cells. Mechanistically, VCF1 indirectly stimulates UFD1-NPL4 interactions with ubiquitin conjugates via its binding to p97 but has no intrinsic affinity for ubiquitin. Collectively, our findings establish VCF1 as an unconventional p97 cofactor that promotes p97-dependent protein turnover by facilitating p97-UFD1-NPL4 recruitment to ubiquitylated targets.
Collapse
Affiliation(s)
- Ann Schirin Mirsanaye
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Saskia Hoffmann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Melanie Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Andreas Mund
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Dimitris Typas
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Johannes van den Boom
- Molecular Biology I, Faculty of Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Michael Lund Nielsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hemmo Meyer
- Molecular Biology I, Faculty of Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
7
|
Palani S, Machida Y, Alvey JR, Mishra V, Welter AL, Cui G, Bragantini B, Botuyan MV, Cong ATQ, Mer G, Schellenberg MJ, Machida YJ. Dimerization-dependent serine protease activity of FAM111A prevents replication fork stalling at topoisomerase 1 cleavage complexes. Nat Commun 2024; 15:2064. [PMID: 38453899 PMCID: PMC10920703 DOI: 10.1038/s41467-024-46207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
FAM111A, a serine protease, plays roles in DNA replication and antiviral defense. Missense mutations in the catalytic domain cause hyper-autocleavage and are associated with genetic disorders with developmental defects. Despite the enzyme's biological significance, the molecular architecture of the FAM111A serine protease domain (SPD) is unknown. Here, we show that FAM111A is a dimerization-dependent protease containing a narrow, recessed active site that cleaves substrates with a chymotrypsin-like specificity. X-ray crystal structures and mutagenesis studies reveal that FAM111A dimerizes via the N-terminal helix within the SPD. This dimerization induces an activation cascade from the dimerization sensor loop to the oxyanion hole through disorder-to-order transitions. Dimerization is essential for proteolytic activity in vitro and for facilitating DNA replication at DNA-protein crosslink obstacles in cells, while it is dispensable for autocleavage. These findings underscore the role of dimerization in FAM111A's function and highlight the distinction in its dimerization dependency between substrate cleavage and autocleavage.
Collapse
Affiliation(s)
- Sowmiya Palani
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Yuka Machida
- Department of Oncology, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julia R Alvey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Vandana Mishra
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Allison L Welter
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Benoît Bragantini
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Anh T Q Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Yuichi J Machida
- Department of Oncology, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA.
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Sepulveda GP, Gushchanskaia ES, Mora-Martin A, Esse R, Nikorich I, Ceballos A, Kwan J, Blum BC, Dholiya P, Emili A, Perissi V, Cardamone MD, Grishok A. DOT1L stimulates MYC/Mondo transcription factor activity by promoting its degradation cycle on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579191. [PMID: 38370658 PMCID: PMC10871221 DOI: 10.1101/2024.02.06.579191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The proto-oncogene c-MYC is a key representative of the MYC transcription factor network regulating growth and metabolism. MML-1 (Myc- and Mondo-like) is its homolog in C. elegans. The functional and molecular cooperation between c-MYC and H3 lysine 79 methyltransferase DOT1L was demonstrated in several human cancer types, and we have earlier discovered the connection between C. elegans MML-1 and DOT-1.1. Here, we demonstrate the critical role of DOT1L/DOT-1.1 in regulating c-MYC/MML-1 target genes genome-wide by ensuring the removal of "spent" transcription factors from chromatin by the nuclear proteasome. Moreover, we uncover a previously unrecognized proteolytic activity of DOT1L, which may facilitate c-MYC turnover. This new mechanism of c-MYC regulation by DOT1L may lead to the development of new approaches for cancer treatment.
Collapse
Affiliation(s)
- Gian P. Sepulveda
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ekaterina S. Gushchanskaia
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Tessera Therapeutics, Somerville, MA, 02143, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Ruben Esse
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Cell and Gene Therapy Catapult, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Iana Nikorich
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ainhoa Ceballos
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Present address: Research Unit, Diagnostica Longwood S.L. 50011 Zaragoza, Spain
| | - Julian Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Prakruti Dholiya
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Emili
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
- Division of Computational Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: OHSU Knight Cancer Institute, School of Medicine, Portland, OR, 97239, USA
| | - Valentina Perissi
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maria D. Cardamone
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Korro Bio Inc., Cambridge, MA, 02139, USA
| | - Alla Grishok
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Genome Science Institute, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
9
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
10
|
Xia D, Zhu X, Wang Y, Gong P, Su HS, Xu X. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy. Biosci Rep 2023; 43:BSR20222591. [PMID: 37728310 PMCID: PMC10550789 DOI: 10.1042/bsr20222591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
DNA replication forks are subject to intricate surveillance and strict regulation by sophisticated cellular machinery. Such close regulation is necessary to ensure the accurate duplication of genetic information and to tackle the diverse endogenous and exogenous stresses that impede this process. Stalled replication forks are vulnerable to collapse, which is a major cause of genomic instability and carcinogenesis. Replication stress responses, which are organized via a series of coordinated molecular events, stabilize stalled replication forks and carry out fork reversal and restoration. DNA damage tolerance and repair pathways such as homologous recombination and Fanconi anemia also contribute to replication fork stabilization. The signaling network that mediates the transduction and interplay of these pathways is regulated by a series of post-translational modifications, including ubiquitination, which affects the activity, stability, and interactome of substrates. In particular, the ubiquitination of replication protein A and proliferating cell nuclear antigen at stalled replication forks promotes the recruitment of downstream regulators. In this review, we describe the ubiquitination-mediated signaling cascades that regulate replication fork progression and stabilization. In addition, we discuss the targeting of replication fork stability and ubiquitination system components as a potential therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Donghui Xia
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuefei Zhu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ying Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hong-Shu Su
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
| | - Xingzhi Xu
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
11
|
Blueggel M, Kroening A, Kracht M, van den Boom J, Dabisch M, Goehring A, Kaschani F, Kaiser M, Bayer P, Meyer H, Beuck C. The UBX domain in UBXD1 organizes ubiquitin binding at the C-terminus of the VCP/p97 AAA-ATPase. Nat Commun 2023; 14:3258. [PMID: 37277335 DOI: 10.1038/s41467-023-38604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.
Collapse
Affiliation(s)
- Mike Blueggel
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Kroening
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kracht
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Dabisch
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Goehring
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Noireterre A, Serbyn N, Bagdiul I, Stutz F. Ubx5-Cdc48 assists the protease Wss1 at DNA-protein crosslink sites in yeast. EMBO J 2023:e113609. [PMID: 37144685 DOI: 10.15252/embj.2023113609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
DNA-protein crosslinks (DPCs) pose a serious threat to genome stability. The yeast proteases Wss1, 26S proteasome, and Ddi1 are safeguards of genome integrity by acting on a plethora of DNA-bound proteins in different cellular contexts. The AAA ATPase Cdc48/p97 is known to assist Wss1/SPRTN in clearing DNA-bound complexes; however, its contribution to DPC proteolysis remains unclear. Here, we show that the Cdc48 adaptor Ubx5 is detrimental in yeast mutants defective in DPC processing. Using an inducible site-specific crosslink, we show that Ubx5 accumulates at persistent DPC lesions in the absence of Wss1, which prevents their efficient removal from the DNA. Abolishing Cdc48 binding or complete loss of Ubx5 suppresses sensitivity of wss1∆ cells to DPC-inducing agents by favoring alternate repair pathways. We provide evidence for cooperation of Ubx5-Cdc48 and Wss1 in the genotoxin-induced degradation of RNA polymerase II (RNAPII), a described candidate substrate of Wss1. We propose that Ubx5-Cdc48 assists Wss1 for proteolysis of a subset of DNA-bound proteins. Together, our findings reveal a central role for Ubx5 in DPC clearance and repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Nataliia Serbyn
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Ivona Bagdiul
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Meyer H, van den Boom J. Targeting of client proteins to the VCP/p97/Cdc48 unfolding machine. Front Mol Biosci 2023; 10:1142989. [PMID: 36825201 PMCID: PMC9941556 DOI: 10.3389/fmolb.2023.1142989] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The AAA+ ATPase p97 (also called VCP or Cdc48) is a major protein unfolding machine with hundreds of clients in diverse cellular pathways that are critical for cell homeostasis, proliferation and signaling. In this review, we summarize recent advances in understanding how diverse client proteins are targeted to the p97 machine to facilitate client degradation or to strip clients from binding partners for regulation. We describe an elaborate system that is governed by at least two types of alternative adapters. The Ufd1-Npl4 adapter along with accessory adapters targets ubiquitylated clients in the majority of pathways and uses ubiquitin as a universal unfolding tag. In contrast, the family of SEP-domain adapters such as p37 can target clients directly to p97 in a ubiquitin-independent manner. Despite the different targeting strategies, both pathways converge by inserting the client into the p97 pore to initiate a peptide threading mechanism through the central channel of p97 that drives client protein unfolding, protein extraction from membranes and protein complex disassembly processes.
Collapse
Affiliation(s)
- Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
14
|
Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol 2023; 30:3-21. [PMID: 36640759 DOI: 10.1016/j.chembiol.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Protein homeostasis deficiencies underlie various cancers and neurodegenerative diseases. The ubiquitin-proteasome system (UPS) and autophagy are responsible for most of the protein degradation in mammalian cells and, therefore, represent attractive targets for cancer therapy and that of neurodegenerative diseases. The ATPase p97, also known as VCP, is a central component of the UPS that extracts and disassembles its substrates from various cellular locations and also regulates different steps in autophagy. Several UPS- and autophagy-targeting drugs are in clinical trials. In this review, we focus on the development of various p97 inhibitors, including the ATPase inhibitors CB-5083 and CB-5339, which reached clinical trials by demonstrating effective anti-tumor activity across various tumor models, providing an effective alternative to targeting protein degradation for cancer therapy. Here, we provide an overview of how different p97 inhibitors have evolved over time both as basic research tools and effective UPS-targeting cancer therapies in the clinic.
Collapse
Affiliation(s)
- Susan Kilgas
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
15
|
Mailand N. A DNA helicase remodeling proteins: How DNA-protein crosslink repair unfolds via FANCJ. Mol Cell 2023; 83:3-5. [PMID: 36608668 DOI: 10.1016/j.molcel.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
In this issue of Molecular Cell, Yaneva et al.1 demonstrate that the DNA helicase FANCJ promotes DNA replication-coupled DNA-protein crosslink (DPC) repair via an unexpected ability to unfold the protein adduct, thereby enabling its proteolysis by the DPC protease SPRTN.
Collapse
Affiliation(s)
- Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Leng X, Duxin JP. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Front Mol Biosci 2022; 9:944775. [PMID: 35860355 PMCID: PMC9289515 DOI: 10.3389/fmolb.2022.944775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
Collapse
|