1
|
Lee IC, Yang YY, Chang HK, Wong SH, Yang SB. Biophysical and structural mechanisms of epilepsy-associated mutations in the S4-S5 Linker of KCNQ2 channels. Channels (Austin) 2025; 19:2464735. [PMID: 39971736 PMCID: PMC11845087 DOI: 10.1080/19336950.2025.2464735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
Mutations in KCNQ2 are linked to various neurological disorders, including neonatal-onset epilepsy. The severity of these conditions often correlates with the mutation's location and the biochemical properties of the altered amino acid side chains. Two mutations affecting aspartate at position 212 (D212) in the S4-S5 linker of KCNQ2 have been identified. Interestingly, while the charge-conserved D212E mutation leads to severe neonatal-onset developmental and epileptic encephalopathy (DEE), the more dramatic substitution to glycine (D212G) results in self-limited familial neonatal epilepsy (SLFNE), a much milder pathology. To elucidate the underlying mechanisms, we performed electrophysiological studies and in silico simulations to investigate these mutations' biophysical and structural effects. Our findings reveal that the D212E mutation stabilizes the channel in the voltage sensor down-state and destabilizes the up-state, leading to a rightward shift in the voltage-dependent activation curve, slower activation kinetics, and accelerated deactivation kinetics. This disruption in KCNQ2 voltage sensitivity persists even in the more physiologically relevant KCNQ2/3 heterotetrameric channels. In contrast, the D212G mutation primarily destabilizes the up-state, but its impact on voltage sensitivity is significantly reduced in KCNQ2/3 heterotetrameric channels. These findings provide key insights into the biophysical and structural basis of KCNQ2 D212 mutations and their contribution to epilepsy-related symptoms, offering a clearer understanding of how these mutations drive the varied clinical outcomes observed in patients.
Collapse
Affiliation(s)
- Inn-Chi Lee
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Hsueh-Kai Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Swee-Hee Wong
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Chatelain FC, Gilbert N, Bichet D, Jauch A, Feliciangeli S, Lesage F, Bignucolo O. Mechanistic basis of the dynamic response of TWIK1 ionic selectivity to pH. Nat Commun 2024; 15:3849. [PMID: 38719838 PMCID: PMC11079055 DOI: 10.1038/s41467-024-48067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Highly selective for K+ at neutral pH, the TWIK1 channel becomes permeable to Na+ upon acidification. Using molecular dynamics simulations, we identify a network of residues involved in this unique property. Between the open and closed states previously observed by electron microscopy, molecular dynamics simulations show that the channel undergoes conformational changes between pH 7.5-6 involving residues His122, Glu235, Lys246 and Phe109. A complex network of interactions surrounding the selectivity filter at high pH transforms into a simple set of stronger interactions at low pH. In particular, His122 protonated by acidification moves away from Lys246 and engages in a salt bridge with Glu235. In addition, stacking interactions between Phe109 and His122, which stabilize the selectivity filter in its K+-selective state at high pH, disappear upon acidification. This leads to dissociation of the Phe109 aromatic side chain from this network, resulting in the Na+-permeable conformation of the channel.
Collapse
Affiliation(s)
- Franck C Chatelain
- Université Côte d'Azur, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Institut de pharmacologie moléculaire et cellulaire, 06560, Valbonne, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Nicolas Gilbert
- Université Côte d'Azur, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Institut de pharmacologie moléculaire et cellulaire, 06560, Valbonne, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Delphine Bichet
- Université Côte d'Azur, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Institut de pharmacologie moléculaire et cellulaire, 06560, Valbonne, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Annaïse Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, Basel, Switzerland
| | - Sylvain Feliciangeli
- Université Côte d'Azur, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Institut de pharmacologie moléculaire et cellulaire, 06560, Valbonne, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Florian Lesage
- Université Côte d'Azur, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Institut de pharmacologie moléculaire et cellulaire, 06560, Valbonne, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France.
| | - Olivier Bignucolo
- Université Côte d'Azur, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Institut de pharmacologie moléculaire et cellulaire, 06560, Valbonne, France
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
3
|
Khoubza L, Gilbert N, Kim EJ, Chatelain FC, Feliciangeli S, Abelanet S, Kang D, Lesage F, Bichet D. Alkaline-sensitive two-pore domain potassium channels form functional heteromers in pancreatic β-cells. J Biol Chem 2022; 298:102447. [PMID: 36063992 PMCID: PMC9520024 DOI: 10.1016/j.jbc.2022.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Two-pore domain K+ channels (K2P channels), active as dimers, produce inhibitory currents regulated by a variety of stimuli. Among them, TWIK1-related alkalinization-activated K+ channel 1 (TALK1), TWIK1-related alkalinization-activated K+ channel 2 (TALK2), and TWIK1-related acid-sensitive K+ channel 2 (TASK2) form a subfamily of structurally related K2P channels stimulated by extracellular alkalosis. The human genes encoding these proteins are clustered at chromosomal region 6p21 and coexpressed in multiple tissues, including the pancreas. The question whether these channels form functional heteromers remained open. By analyzing single-cell transcriptomic data, we show that these channels are coexpressed in insulin-secreting pancreatic β-cells. Using in situ proximity ligation assay and electrophysiology, we show that they form functional heterodimers both upon heterologous expression and under native conditions in human pancreatic β-cells. We demonstrate that heteromerization of TALK2 with TALK1 or with TASK2 endows TALK2 with sensitivity to extracellular alkalosis in the physiological range. We further show that the association of TASK2 with TALK1 and TALK2 increases their unitary conductance. These results provide a new example of heteromerization in the K2P channel family expanding the range of the potential physiological and pathophysiological roles of TALK1/TALK2/TASK2 channels, not only in insulin-secreting cells but also in the many other tissues in which they are coexpressed.
Collapse
Affiliation(s)
- Lamyaa Khoubza
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Nicolas Gilbert
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Franck C Chatelain
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Sylvain Feliciangeli
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France; Inserm, Paris, France
| | - Sophie Abelanet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Dawon Kang
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Florian Lesage
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France; Inserm, Paris, France.
| | - Delphine Bichet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| |
Collapse
|