1
|
Li F, Chan UH, Perez JG, Zeng H, Chau I, Li Y, Seitova A, Halabelian L. ATPase activity profiling of three human DExD/H-box RNA helicases. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100229. [PMID: 40194700 DOI: 10.1016/j.slasd.2025.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Human DExD/H-box RNA helicases are ubiquitous molecular motors that unwind and rearrange RNA secondary structures in an ATP-dependent manner. These enzymes play essential roles in nearly all aspects of RNA metabolism. While their biological functions are well-characterized, the kinetic mechanisms remain relatively understudied in vitro. In this study, we describe the development and optimization of a bioluminescence-based assay to characterize the ATPase activity of three human RNA helicases: MDA5, LGP2, and DDX1. The assays were conducted using annealed 24-mer ds-RNA (blunt-ended double-stranded RNA) or double-stranded RNA with a 25-nt 3' overhang (partial ds-RNA). These findings establish a robust and high-throughput in vitro assay suitable for a 384-well format, enabling the discovery and characterization of inhibitors targeting MDA5, LGP2, and DDX1. This work provides a valuable resource for advancing our understanding of these helicases and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - U Hang Chan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Julia Garcia Perez
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Almagul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
2
|
Li F, Chan UH, Perez JG, Zeng H, Chau I, Li Y, Seitova A, Halabelian L. Kinetic characterization of three human DExD/H-box RNA helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637080. [PMID: 39975009 PMCID: PMC11839018 DOI: 10.1101/2025.02.07.637080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Human DExD/H-box RNA helicases are ubiquitous molecular motors that unwind and rearrange RNA secondary structures in an ATP-dependent manner. These enzymes play essential roles in nearly all aspects of RNA metabolism. While their biological functions are well-characterized, the kinetic mechanisms remain relatively understudied in vitro. In this study, we describe the development and optimization of a bioluminescence-based assay to kinetically characterize three human RNA helicases: MDA5, LGP2, and DDX1. The assays were conducted using annealed 24-mer RNA (blunt-ended double-stranded RNA) or double-stranded RNA (ds-RNA) with a 25-nt 3' overhang. These findings establish a robust and high-throughput in vitro assay suitable for a 384-well format, enabling the discovery and characterization of inhibitors targeting MDA5, LGP2, and DDX1. This work provides a valuable resource for advancing our understanding of these helicases and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - U Hang Chan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Julia Garcia Perez
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Moore AT, Berhie Y, Weislow IS, Koculi E. Substrate Specificities of DDX1: A Human DEAD-Box Protein. ACS OMEGA 2025; 10:2598-2607. [PMID: 39895751 PMCID: PMC11780465 DOI: 10.1021/acsomega.4c07522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 02/04/2025]
Abstract
DDX1 is a human DEAD-box RNA helicase involved in various stages of RNA metabolism, from transcription to decay, and is consequently implicated in many human diseases. The nucleotides hydrolyzed by DDX1 and the structures of the nucleic acids upon which it acts in cells remain largely unknown. In this study, we identify the nucleic acid sequences and structures that support DDX1's nucleotide hydrolysis activity and determine its nucleotide hydrolysis specificity. Our data demonstrate that DDX1 hydrolyzes only ATP and deoxy-ATP in the presence of RNA. The ATP hydrolysis activity of DDX1 is stimulated by single-stranded RNA molecules as short as ten nucleotides, a blunt-ended double-stranded RNA, double-stranded RNA/DNA hybrid, and single-stranded DNA. Under our experimental conditions, single-stranded DNA stimulates DDX1's ATPase activity to a smaller extent compared to the other RNA constructs or the RNA/DNA hybrid. Given DDX1's involvement in numerous critical cellular processes and its implication in various human diseases, determining its substrate specificity not only enhances our understanding of its in vivo function, but also facilitates the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Anthony
F. T. Moore
- Department
of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, Florida 32816-2366, United States
| | - Yepeth Berhie
- Department
of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, Florida 32816-2366, United States
| | - Isaac S. Weislow
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, Texas 79902-5802, United States
| | - Eda Koculi
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, Texas 79902-5802, United States
| |
Collapse
|
4
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Liu Y, Yeh PK, Lin YK, Liang CS, Tsai CL, Lin GY, An YC, Tsai MC, Hung KS, Yang FC. Genetic Risk Loci and Familial Associations in Migraine: A Genome-Wide Association Study in the Han Chinese Population of Taiwan. J Clin Neurol 2024; 20:439-449. [PMID: 38951977 PMCID: PMC11220351 DOI: 10.3988/jcn.2023.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Migraine is a condition that is often observed to run in families, but its complex genetic background remains unclear. This study aimed to identify the genetic factors influencing migraines and their potential association with the family medical history. METHODS We performed a comprehensive genome-wide association study of a cohort of 1,561 outpatients with migraine and 473 individuals without migraine in Taiwan, including Han Chinese individuals with or without a family history of migraine. By analyzing the detailed headache history of the patients and their relatives we aimed to isolate potential genetic markers associated with migraine while considering factors such as sex, episodic vs. chronic migraine, and the presence of aura. RESULTS We revealed novel genetic risk loci, including rs2287637 in DEAD-Box helicase 1 and long intergenic non-protein coding RNA 1804 and rs12055943 in engulfment and cell motility 1, that were correlated with the family history of migraine. We also found a genetic location downstream of mesoderm posterior BHLH transcription factor 2 associated with episodic migraine, whereas loci within the ubiquitin-specific peptidase 26 exonic region, dual specificity phosphatase 9 and pregnancy-upregulated non-ubiquitous CaM kinase intergenic regions, and poly (ADP-ribose) polymerase 1 and STUM were linked to chronic migraine. We additionally identified genetic regionsassociated with the presence or absence of aura. A locus between LINC02561 and urocortin 3 was predominantly observed in female patients. Moreover, three different single-nucleotide polymorphisms were associated with the family history of migraine in the control group. CONCLUSIONS This study has identified new genetic locations associated with migraine and its family history in a Han Chinese population, reinforcing the genetic background of migraine. The findings point to potential candidate genes that should be investigated further.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chin An
- Department of Emergency, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Chen Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Garg M, Li L, Godbout R. Role of DDX1 in the oxidative response of ataxia telangiectasia patient-derived fibroblasts. Redox Biol 2024; 69:102988. [PMID: 38096740 PMCID: PMC10761787 DOI: 10.1016/j.redox.2023.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Ataxia Telangiectasia (A-T) is an inherited autosomal recessive disorder characterized by cerebellar neurodegeneration, radiosensitivity, immunodeficiency and a high incidence of lymphomas. A-T is caused by mutations in the ATM gene. While loss of ATM function in DNA repair explains some aspects of A-T pathophysiology such as radiosensitivity and cancer predisposition, other A-T features such as neurodegeneration imply additional roles for ATM outside the nucleus. Emerging evidence suggests that ATM participates in cellular response to oxidative stress, failure of which contributes to the neurodegeneration associated with A-T. Here, we use fibroblasts derived from A-T patients to investigate whether DEAD Box 1 (DDX1), an RNA binding/unwinding protein that functions downstream of ATM in DNA double strand break repair, also plays a role in ATM-dependent cellular response to oxidative stress. Focusing on DDX1 target RNAs that are associated with neurological disorders and oxidative stress response, we show that ATM is required for increased binding of DDX1 to its target RNAs in the presence of arsenite-induced oxidative stress. Our results indicate that DDX1 functions downstream of ATM by protecting specific mRNAs in the cytoplasm of arsenite-treated cells. In keeping with a role for ATM and DDX1 in oxidative stress, levels of reactive oxygen species (ROS) are increased in ATM-deficient as well as DDX1-depleted cells. We propose that reduced levels of cytoplasmic DDX1 RNA targets sensitizes ATM-deficient cells to oxidative stress resulting in increased cell death. This sensitization would be especially detrimental to long-lived highly metabolically active cells such as neurons providing a possible explanation for the neurodegenerative defects associated with A-T.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Lei Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
7
|
Moore AFT, Berhie Y, Weislow IS, Koculi E. Substrate Specificities of DDX1: A Human DEAD-box protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.573566. [PMID: 38260591 PMCID: PMC10802426 DOI: 10.1101/2024.01.09.573566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
DDX1 is a human protein which belongs to the DEAD-box protein family of enzymes and is involved in various stages of RNA metabolism from transcription to decay. Many members of the DEAD-box family of enzymes use the energy of ATP binding and hydrolysis to perform their cellular functions. On the other hand, a few members of the DEAD-box family of enzymes bind and/or hydrolyze other nucleotides in addition to ATP. Furthermore, the ATPase activity of DEAD-box family members is stimulated differently by nucleic acids of various structures. The identity of the nucleotides that the DDX1 hydrolyzes and the structure of the nucleic acids upon which it acts in the cell remain largely unknown. Identifying the DDX1 protein's in vitro substrates is important for deciphering the molecular roles of DDX1 in cells. Here we identify the nucleic acid sequences and structures supporting the nucleotide hydrolysis activity of DDX1 and its nucleotide specificity. Our data demonstrate that the DDX1 protein hydrolyzes only ATP and deoxy-ATP in the presence of RNA. The ATP hydrolysis activity of DDX1 is stimulated by multiple molecules: single-stranded RNA molecules as short as ten nucleotides, a blunt-ended double-stranded RNA molecule, a hybrid of a double-stranded DNA-RNA molecule, and a single-stranded DNA molecule. Under our experimental conditions, the single-stranded DNA molecule stimulates the ATPase activity of DDX1 at a significantly reduced extent when compared to the other investigated RNA constructs or the hybrid double-stranded DNA/RNA molecule.
Collapse
Affiliation(s)
- Anthony F. T. Moore
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, FL 32816-2366
| | - Yepeth Berhie
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, FL 32816-2366
| | - Isaac S. Weislow
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, TX, 79902-5802
| | - Eda Koculi
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, TX, 79902-5802
| |
Collapse
|
8
|
Flood D, Lee ES, Taylor CT. Intracellular energy production and distribution in hypoxia. J Biol Chem 2023; 299:105103. [PMID: 37507013 PMCID: PMC10480318 DOI: 10.1016/j.jbc.2023.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The hydrolysis of ATP is the primary source of metabolic energy for eukaryotic cells. Under physiological conditions, cells generally produce more than sufficient levels of ATP to fuel the active biological processes necessary to maintain homeostasis. However, mechanisms underpinning the distribution of ATP to subcellular microenvironments with high local demand remain poorly understood. Intracellular distribution of ATP in normal physiological conditions has been proposed to rely on passive diffusion across concentration gradients generated by ATP producing systems such as the mitochondria and the glycolytic pathway. However, subcellular microenvironments can develop with ATP deficiency due to increases in local ATP consumption. Alternatively, ATP production can be reduced during bioenergetic stress during hypoxia. Mammalian cells therefore need to have the capacity to alter their metabolism and energy distribution strategies to compensate for local ATP deficits while also controlling ATP production. It is highly likely that satisfying the bioenergetic requirements of the cell involves the regulated distribution of ATP producing systems to areas of high ATP demand within the cell. Recently, the distribution (both spatially and temporally) of ATP-producing systems has become an area of intense investigation. Here, we review what is known (and unknown) about intracellular energy production and distribution and explore potential mechanisms through which this targeted distribution can be altered in hypoxia, with the aim of stimulating investigation in this important, yet poorly understood field of research.
Collapse
Affiliation(s)
- Darragh Flood
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eun Sang Lee
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Hou XN, Tang C. The pros and cons of ubiquitination on the formation of protein condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1084-1098. [PMID: 37294105 PMCID: PMC10423694 DOI: 10.3724/abbs.2023096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chun Tang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Center for Quantitate BiologyPKU-Tsinghua Center for Life ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
10
|
DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends Biochem Sci 2023; 48:244-258. [PMID: 36344372 DOI: 10.1016/j.tibs.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
RNA-dependent DEAD-box ATPases (DDXs) are emerging as major regulators of RNA-containing membrane-less organelles (MLOs). On the one hand, oligomerizing DDXs can promote condensate formation 'in cis', often using RNA as a scaffold. On the other hand, DDXs can disrupt RNA-RNA and RNA-protein interactions and thereby 'in trans' remodel the multivalent interactions underlying MLO formation. In this review, we discuss the best studied examples of DDXs modulating MLOs in cis and in trans. Further, we illustrate how this contributes to the dynamic assembly and turnover of MLOs which might help cells to modulate RNA sequestration and processing in a temporal and spatial manner.
Collapse
|
11
|
Antigene MYCN Silencing by BGA002 Inhibits SCLC Progression Blocking mTOR Pathway and Overcomes Multidrug Resistance. Cancers (Basel) 2023; 15:cancers15030990. [PMID: 36765949 PMCID: PMC9913109 DOI: 10.3390/cancers15030990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.
Collapse
|