1
|
Jones RM, Ruiz JH, Scaramuzza S, Nath S, Liu C, Henklewska M, Natsume T, Bristow RG, Romero F, Kanemaki MT, Gambus A. Characterizing replisome disassembly in human cells. iScience 2024; 27:110260. [PMID: 39055910 PMCID: PMC11269944 DOI: 10.1016/j.isci.2024.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
To ensure timely duplication of the entire eukaryotic genome, thousands of replication machineries (replisomes) act on genomic DNA at any time during S phase. In the final stages of this process, replisomes are unloaded from chromatin. Unloading is driven by polyubiquitylation of MCM7, a subunit of the terminated replicative helicase, and processed by p97/VCP segregase. Most of our knowledge of replication termination comes from model organisms, and little is known about how this process is executed and regulated in human somatic cells. Here we show that replisome disassembly in this system requires CUL2LRR1-driven MCM7 ubiquitylation, p97, and UBXN7 for unloading and provide evidence for "backup" mitotic replisome disassembly, demonstrating conservation of such mechanisms. Finally, we find that small-molecule inhibitors against Cullin ubiquitin ligases (CULi) and p97 (p97i) affect replisome unloading but also lead to induction of replication stress in cells, which limits their usefulness to specifically target replisome disassembly processes.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Joaquin Herrero Ruiz
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Shaun Scaramuzza
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Sarmi Nath
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Chaoyu Liu
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Marta Henklewska
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Robert G. Bristow
- Cancer Research UK – Manchester Institute, Manchester Cancer Research Center, Manchester, UK
| | - Francisco Romero
- Department of Microbiology, University of Seville, Seville, Spain
| | - Masato T. Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, Japan
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Noireterre A, Stutz F. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. DNA Repair (Amst) 2024; 139:103691. [PMID: 38744091 DOI: 10.1016/j.dnarep.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland.
| |
Collapse
|
3
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
4
|
Li H, Ji Z, Paulo JA, Gygi SP, Rapoport TA. Bidirectional substrate shuttling between the 26S proteasome and the Cdc48 ATPase promotes protein degradation. Mol Cell 2024; 84:1290-1303.e7. [PMID: 38401542 PMCID: PMC11995671 DOI: 10.1016/j.molcel.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
Most eukaryotic proteins are degraded by the 26S proteasome after modification with a polyubiquitin chain. Substrates lacking unstructured segments cannot be degraded directly and require prior unfolding by the Cdc48 ATPase (p97 or VCP in mammals) in complex with its ubiquitin-binding partner Ufd1-Npl4 (UN). Here, we use purified yeast components to reconstitute Cdc48-dependent degradation of well-folded model substrates by the proteasome. We show that a minimal system consists of the 26S proteasome, the Cdc48-UN ATPase complex, the proteasome cofactor Rad23, and the Cdc48 cofactors Ubx5 and Shp1. Rad23 and Ubx5 stimulate polyubiquitin binding to the 26S proteasome and the Cdc48-UN complex, respectively, allowing these machines to compete for substrates before and after their unfolding. Shp1 stimulates protein unfolding by the Cdc48-UN complex rather than substrate recruitment. Experiments in yeast cells confirm that many proteins undergo bidirectional substrate shuttling between the 26S proteasome and Cdc48 ATPase before being degraded.
Collapse
Affiliation(s)
- Hao Li
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Zhejian Ji
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Jones RM, Reynolds-Winczura A, Gambus A. A Decade of Discovery-Eukaryotic Replisome Disassembly at Replication Termination. BIOLOGY 2024; 13:233. [PMID: 38666845 PMCID: PMC11048390 DOI: 10.3390/biology13040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The eukaryotic replicative helicase (CMG complex) is assembled during DNA replication initiation in a highly regulated manner, which is described in depth by other manuscripts in this Issue. During DNA replication, the replicative helicase moves through the chromatin, unwinding DNA and facilitating nascent DNA synthesis by polymerases. Once the duplication of a replicon is complete, the CMG helicase and the remaining components of the replisome need to be removed from the chromatin. Research carried out over the last ten years has produced a breakthrough in our understanding, revealing that replication termination, and more specifically replisome disassembly, is indeed a highly regulated process. This review brings together our current understanding of these processes and highlights elements of the mechanism that are conserved or have undergone divergence throughout evolution. Finally, we discuss events beyond the classic termination of DNA replication in S-phase and go over the known mechanisms of replicative helicase removal from chromatin in these particular situations.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
- School of Biosciences, Aston University, Birmingham B4 7ET, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK; (R.M.J.); (A.R.-W.)
| |
Collapse
|
6
|
Li H, Ji Z, Paulo JA, Gygi SP, Rapoport TA. Bidirectional substrate shuttling between the 26S proteasome and the Cdc48 ATPase promotes protein degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572403. [PMID: 38187576 PMCID: PMC10769200 DOI: 10.1101/2023.12.20.572403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Most eukaryotic proteins are degraded by the 26S proteasome after modification with a polyubiquitin chain. Substrates lacking unstructured segments cannot be degraded directly and require prior unfolding by the Cdc48 ATPase (p97 or VCP in mammals) in complex with its ubiquitin-binding partner Ufd1-Npl4 (UN). Here, we use purified yeast components to reconstitute Cdc48-dependent degradation of well-folded model substrates by the proteasome. We show that a minimal system consists of the 26S proteasome, the Cdc48-UN ATPase complex, the proteasome cofactor Rad23, and the Cdc48 cofactors Ubx5 and Shp1. Rad23 and Ubx5 stimulate polyubiquitin binding to the 26S proteasome and the Cdc48-UN complex, respectively, allowing these machines to compete for substrates before and after their unfolding. Shp1 stimulates protein unfolding by the Cdc48-UN complex, rather than substrate recruitment. In vivo experiments confirm that many proteins undergo bidirectional substrate shuttling between the 26S proteasome and Cdc48 ATPase before being degraded.
Collapse
|
7
|
Han J, Mu Y, Huang J. Preserving genome integrity: The vital role of SUMO-targeted ubiquitin ligases. CELL INSIGHT 2023; 2:100128. [PMID: 38047137 PMCID: PMC10692494 DOI: 10.1016/j.cellin.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023]
Abstract
Various post-translational modifications (PTMs) collaboratively fine-tune protein activities. SUMO-targeted ubiquitin E3 ligases (STUbLs) emerge as specialized enzymes that recognize SUMO-modified substrates through SUMO-interaction motifs and subsequently ubiquitinate them via the RING domain, thereby bridging the SUMO and ubiquitin signaling pathways. STUbLs participate in a wide array of molecular processes, including cell cycle regulation, DNA repair, replication, and mitosis, operating under both normal conditions and in response to challenges such as genotoxic stress. Their ability to catalyze various types of ubiquitin chains results in diverse proteolytic and non-proteolytic outcomes for target substrates. Importantly, STUbLs are strategically positioned in close proximity to SUMO proteases and deubiquitinases (DUBs), ensuring precise and dynamic control over their target proteins. In this review, we provide insights into the unique properties and indispensable roles of STUbLs, with a particular emphasis on their significance in preserving genome integrity in humans.
Collapse
Affiliation(s)
- Jinhua Han
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Huang
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
8
|
Cvetkovic MA, Passaretti P, Butryn A, Reynolds-Winczura A, Kingsley G, Skagia A, Fernandez-Cuesta C, Poovathumkadavil D, George R, Chauhan AS, Jhujh SS, Stewart GS, Gambus A, Costa A. The structural mechanism of dimeric DONSON in replicative helicase activation. Mol Cell 2023; 83:4017-4031.e9. [PMID: 37820732 PMCID: PMC7616792 DOI: 10.1016/j.molcel.2023.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.
Collapse
Affiliation(s)
- Milos A Cvetkovic
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Agata Butryn
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Georgia Kingsley
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Aggeliki Skagia
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Cyntia Fernandez-Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Divyasree Poovathumkadavil
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Anoop S Chauhan
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
9
|
Kingsley G, Skagia A, Passaretti P, Fernandez-Cuesta C, Reynolds-Winczura A, Koscielniak K, Gambus A. DONSON facilitates Cdc45 and GINS chromatin association and is essential for DNA replication initiation. Nucleic Acids Res 2023; 51:9748-9763. [PMID: 37638758 PMCID: PMC10570026 DOI: 10.1093/nar/gkad694] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome. The mechanism of origin activation has been well characterised and reconstituted in yeast, however, an equal understanding of this process in higher eukaryotes is lacking. The firing of replication origins is driven by S-phase kinases (CDKs and DDK) and results in the activation of the replicative helicase and generation of two bi-directional replication forks. Our data, generated from cell-free Xenopus laevis egg extracts, show that DONSON is required for assembly of the active replicative helicase (CMG complex) at origins during replication initiation. DONSON has previously been shown to be essential during DNA replication, both in human cells and in Drosophila, but the mechanism of DONSON's action was unknown. Here we show that DONSON's presence is essential for replication initiation as it is required for Cdc45 and GINS association with Mcm2-7 complexes and helicase activation. To fulfil this role, DONSON interacts with the initiation factor, TopBP1, in a CDK-dependent manner. Following its initiation role, DONSON also forms a part of the replisome during the elongation stage of DNA replication. Mutations in DONSON have recently been shown to lead to the Meier-Gorlin syndrome; this novel replication initiation role of DONSON therefore provides the explanation for the phenotypes caused by DONSON mutations in patients.
Collapse
Affiliation(s)
- Georgia Kingsley
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Aggeliki Skagia
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Cyntia Fernandez-Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Kinga Koscielniak
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| |
Collapse
|
10
|
Körner M, Meyer SR, Marincola G, Kern MJ, Grimm C, Schuelein-Voelk C, Fischer U, Hofmann K, Buchberger A. The FAM104 proteins VCF1/2 promote the nuclear localization of p97/VCP. eLife 2023; 12:e92409. [PMID: 37713320 PMCID: PMC10541173 DOI: 10.7554/elife.92409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
The ATPase p97 (also known as VCP, Cdc48) has crucial functions in a variety of important cellular processes such as protein quality control, organellar homeostasis, and DNA damage repair, and its de-regulation is linked to neuromuscular diseases and cancer. p97 is tightly controlled by numerous regulatory cofactors, but the full range and function of the p97-cofactor network is unknown. Here, we identify the hitherto uncharacterized FAM104 proteins as a conserved family of p97 interactors. The two human family members VCP nuclear cofactor family member 1 and 2 (VCF1/2) bind p97 directly via a novel, alpha-helical motif and associate with p97-UFD1-NPL4 and p97-UBXN2B complexes in cells. VCF1/2 localize to the nucleus and promote the nuclear import of p97. Loss of VCF1/2 results in reduced nuclear p97 levels, slow growth, and hypersensitivity to chemical inhibition of p97 in the absence and presence of DNA damage, suggesting that FAM104 proteins are critical regulators of nuclear p97 functions.
Collapse
Affiliation(s)
- Maria Körner
- University of Würzburg, Biocenter, Chair of Biochemistry IWürzburgGermany
| | - Susanne R Meyer
- University of Würzburg, Biocenter, Chair of Biochemistry IWürzburgGermany
| | | | - Maximilian J Kern
- Department of Molecular Cell Biology, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Clemens Grimm
- University of Würzburg, Biocenter, Chair of Biochemistry IWürzburgGermany
| | | | - Utz Fischer
- University of Würzburg, Biocenter, Chair of Biochemistry IWürzburgGermany
| | - Kay Hofmann
- Institute of Genetics, University of CologneCologneGermany
| | | |
Collapse
|
11
|
Scaramuzza S, Jones RM, Sadurni MM, Reynolds-Winczura A, Poovathumkadavil D, Farrell A, Natsume T, Rojas P, Cuesta CF, Kanemaki MT, Saponaro M, Gambus A. TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells. Nat Commun 2023; 14:5071. [PMID: 37604812 PMCID: PMC10442450 DOI: 10.1038/s41467-023-40695-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Cell division is the basis for the propagation of life and requires accurate duplication of all genetic information. DNA damage created during replication (replication stress) is a major cause of cancer, premature aging and a spectrum of other human disorders. Over the years, TRAIP E3 ubiquitin ligase has been shown to play a role in various cellular processes that govern genome integrity and faultless segregation. TRAIP is essential for cell viability, and mutations in TRAIP ubiquitin ligase activity lead to primordial dwarfism in patients. Here, we have determined the mechanism of inhibition of cell proliferation in TRAIP-depleted cells. We have taken advantage of the auxin induced degron system to rapidly degrade TRAIP within cells and to dissect the importance of various functions of TRAIP in different stages of the cell cycle. We conclude that upon rapid TRAIP degradation, specifically in S-phase, cells cease to proliferate, arrest in G2 stage of the cell cycle and undergo senescence. Our findings reveal that TRAIP works in S-phase to prevent DNA damage at transcription start sites, caused by replication-transcription conflicts.
Collapse
Affiliation(s)
- Shaun Scaramuzza
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
- Cancer Research UK - Manchester Institute, Manchester Cancer Research Centre, Manchester, UK
| | - Rebecca M Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Martina Muste Sadurni
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Abigail Farrell
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Cyntia Fernandez Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
12
|
Meyer H, van den Boom J. Targeting of client proteins to the VCP/p97/Cdc48 unfolding machine. Front Mol Biosci 2023; 10:1142989. [PMID: 36825201 PMCID: PMC9941556 DOI: 10.3389/fmolb.2023.1142989] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The AAA+ ATPase p97 (also called VCP or Cdc48) is a major protein unfolding machine with hundreds of clients in diverse cellular pathways that are critical for cell homeostasis, proliferation and signaling. In this review, we summarize recent advances in understanding how diverse client proteins are targeted to the p97 machine to facilitate client degradation or to strip clients from binding partners for regulation. We describe an elaborate system that is governed by at least two types of alternative adapters. The Ufd1-Npl4 adapter along with accessory adapters targets ubiquitylated clients in the majority of pathways and uses ubiquitin as a universal unfolding tag. In contrast, the family of SEP-domain adapters such as p37 can target clients directly to p97 in a ubiquitin-independent manner. Despite the different targeting strategies, both pathways converge by inserting the client into the p97 pore to initiate a peptide threading mechanism through the central channel of p97 that drives client protein unfolding, protein extraction from membranes and protein complex disassembly processes.
Collapse
Affiliation(s)
- Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
13
|
Kochenova OV, Mukkavalli S, Raman M, Walter JC. Cooperative assembly of p97 complexes involved in replication termination. Nat Commun 2022; 13:6591. [PMID: 36329031 PMCID: PMC9633789 DOI: 10.1038/s41467-022-34210-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The p97 ATPase extracts polyubiquitylated proteins from diverse cellular structures in preparation for destruction by the proteasome. p97 functions with Ufd1-Npl4 and a variety of UBA-UBX co-factors, but how p97 complexes assemble on ubiquitylated substrates is unclear. To address this, we investigated how p97 disassembles the CMG helicase after it is ubiquitylated during replication termination. We show that p97Ufd1-Npl4 recruitment to CMG requires the UBA-UBX protein Ubxn7, and conversely, stable Ubxn7 binding to CMG requires p97Ufd1-Npl4. This cooperative assembly involves interactions between Ubxn7, p97, Ufd1-Npl4, and ubiquitin. Another p97 co-factor, Faf1, partially compensates for the loss of Ubxn7. Surprisingly, p97Ufd1-Npl4-Ubxn7 and p97Ufd1-Npl4-Faf1 also assemble cooperatively on unanchored ubiquitin chains. We propose that cooperative and substrate-independent recognition of ubiquitin chains allows p97 to recognize an unlimited number of polyubiquitylated proteins while avoiding the formation of partial, inactive complexes.
Collapse
Affiliation(s)
- Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|