1
|
Till K, Borchers A. The Rho GEF Trio functions in contact inhibition of locomotion of neural crest cells by interacting with Ptk7. Development 2025; 152:dev204446. [PMID: 40326503 DOI: 10.1242/dev.204446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Neural crest (NC) cells are highly migratory cells that contribute to a wide range of vertebrate tissues and must respond to a variety of external signals to precisely control directed cell migration. The RhoGEF Trio is particularly well suited to relay signals to the cytoskeleton because it contains two GEF domains that activate Rac1 and RhoA, respectively. Previously, we have shown that Trio is dynamically localized in Xenopus NC cells and required for their migration. However, how its distinct enzymatic functions are spatially controlled remains unclear. Here, we show that Trio is required for contact inhibition of locomotion (CIL), a phenomenon whereby NC cells change their polarity and directionality upon cell-cell contact. At cell-cell contacts, Trio interacts with Ptk7, a regulator of planar cell polarity that we have recently shown to be required for CIL. Our data suggest that Ptk7 inhibits the Rac1 activity of Trio, thereby limiting Trio activity to the activation of RhoA and promoting CIL.
Collapse
Affiliation(s)
- Katharina Till
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| |
Collapse
|
2
|
Parnell E, Christiansen JM, Spratt MA, Ruiz S, Macdonald ML, Penzes P, Sweet RA, Grubisha MJ. Oligodendrocyte myelin glycoprotein impairs dendritic arbors via schizophrenia risk gene Trio. Neurobiol Dis 2025; 211:106928. [PMID: 40274132 DOI: 10.1016/j.nbd.2025.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025] Open
Abstract
During adolescence, a critical developmental epoch coincident with the emergence of clinical symptoms of schizophrenia, cerebral cortical dendritic growth shifts from a rapid phase, reaching equilibrium. Oligodendrocyte Myelin Glycoprotein (OMGp) expression peaks during adolescence and has a known role in regulating dendritic stabilization. However, the precise signaling pathways transduced by OMGp are unknown. To identify these pathways, we performed unbiased phospho-proteomic analysis after OMGp stimulation, revealing 2991 phosphorylated proteins. Interestingly, several schizophrenia risk genes were identified as phospho-targets, including the potent risk factor Trio, which has a known role in regulating neurite outgrowth and the cytoskeleton through its dual Rac/RhoA catalytic domains. Phosphomimetic and phosphonull Trio9 constructs were employed to assess the functional role of OMGp-mediated phosphorylation at a novel phosphosite - Ser1258. Phosphomimetic Trio9 was deficient in Rac1 catalytic activity and induced loss of dendritic length and complexity compared to wild type protein. Moreover, phosphonull constructs blocked the OMGp-induced impairments in dendritic length and complexity. Together, these results highlight the ability of OMGp to regulate dendritic architecture by potently inhibiting the Rac1 catalytic activity of Trio through phosphorylation. These results provide a potential mechanism contributing to the emergence of neuronal structural dysfunction and schizophrenia symptomology during adolescence.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 6061, United States of America
| | - Jessica M Christiansen
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 6061, United States of America
| | - Michelle A Spratt
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Shelby Ruiz
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Matthew L Macdonald
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 6061, United States of America; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America; Centre for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert A Sweet
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Melanie J Grubisha
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
3
|
Ishchenko Y, Jeng AT, Feng S, Nottoli T, Manriquez-Rodriguez C, Nguyen KK, Carrizales MG, Vitarelli MJ, Corcoran EE, Greer CA, Myers SA, Koleske AJ. Heterozygosity for neurodevelopmental disorder-associated TRIO variants yields distinct deficits in behavior, neuronal development, and synaptic transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.05.574442. [PMID: 39131289 PMCID: PMC11312463 DOI: 10.1101/2024.01.05.574442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Genetic variants in TRIO are associated with neurodevelopmental disorders (NDDs) including schizophrenia (SCZ), autism spectrum disorder (ASD) and intellectual disability. TRIO uses its two guanine nucleotide exchange factor (GEF) domains to activate GTPases (GEF1: Rac1 and RhoG; GEF2: RhoA) that control neuronal development and connectivity. It remains unclear how discrete TRIO variants differentially impact these neurodevelopmental events. Here, we investigate how heterozygosity for NDD-associated Trio variants - +/K1431M (ASD), +/K1918X (SCZ), and +/M2145T (bipolar disorder, BPD) - impact mouse behavior, brain development, and synapse structure and function. Heterozygosity for different Trio variants impacts motor, social, and cognitive behaviors in distinct ways that model clinical phenotypes in humans. Trio variants differentially impact head and brain size, with corresponding changes in dendritic arbors of motor cortex layer 5 pyramidal neurons (M1 L5 PNs). Although neuronal structure was only modestly altered in the Trio variant heterozygotes, we observe significant changes in synaptic function and plasticity. We also identified distinct changes in glutamate synaptic release in +/K1431M and +/M2145T cortico-cortical synapses. The TRIO K1431M GEF1 domain has impaired ability to promote GTP exchange on Rac1, but +/K1431M mice exhibit increased Rac1 activity, associated with increased levels of the Rac1 GEF Tiam1. Acute Rac1 inhibition with NSC23766 rescued glutamate release deficits in +/K1431M variant cortex. Our work reveals that discrete NDD-associated Trio variants yield overlapping but distinct phenotypes in mice, demonstrates an essential role for Trio in presynaptic glutamate release, and underscores the importance of studying the impact of variant heterozygosity in vivo.
Collapse
Affiliation(s)
- Yevheniia Ishchenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Amanda T Jeng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Shufang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Gerontology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Khanh K Nguyen
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Melissa G Carrizales
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Matthew J Vitarelli
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Ellen E Corcoran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Ravala SK, Tesmer JJG. New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors. Mol Pharmacol 2024; 106:117-128. [PMID: 38902036 PMCID: PMC11331503 DOI: 10.1124/molpharm.124.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Brownfield BA, Richardson BC, Halaby SL, Fromme JC. Sec7 regulatory domains scaffold autoinhibited and active conformations. Proc Natl Acad Sci U S A 2024; 121:e2318615121. [PMID: 38416685 PMCID: PMC10927569 DOI: 10.1073/pnas.2318615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 03/01/2024] Open
Abstract
The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.
Collapse
Affiliation(s)
- Bryce A. Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Brian C. Richardson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Steve L. Halaby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
6
|
Gossen S, Gerstner S, Borchers A. The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells. Cells Dev 2024; 177:203899. [PMID: 38160720 DOI: 10.1016/j.cdev.2023.203899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.
Collapse
Affiliation(s)
- Stefanie Gossen
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
7
|
Haspel N, Jang H, Nussinov R. Allosteric Activation of RhoA Complexed with p115-RhoGEF Deciphered by Conformational Dynamics. J Chem Inf Model 2024; 64:862-873. [PMID: 38215280 DOI: 10.1021/acs.jcim.3c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The Ras homologue family member A (RhoA) is a member of the Rho family, a subgroup of the Ras superfamily. RhoA interacts with the 115 kDa guanine nucleotide exchange factor (p115-RhoGEF), which assists in activation and binding with downstream effectors. Here, we use molecular dynamics (MD) simulations and essential dynamics analysis of the inactive RhoA-GDP and active RhoA-GTP, when bound to p115-RhoGEF to decipher the mechanism of RhoA activation at the structural level. We observe that inactive RhoA-GDP maintains its position near the catalytic site on the Dbl homology (DH) domain of p115-RhoGEF through the interaction of its Switch I region with the DH domain. We further show that the active RhoA-GTP is engaged in more interactions with the p115-RhoGEF membrane-bound Pleckstrin homology (PH) domain as compared to RhoA-GDP. We hypothesize that the role of the interactions between the active RhoA-GTP and the PH domain is to help release it from the DH domain upon activation. Our results support this premise, and our simulations uncover the beginning of this process and provide structural details. They also point to allosteric communication pathways that take part in RhoA activation to promote and strengthen the interaction between the active RhoA-GTP and the PH domain. Allosteric regulation also occurs among other members of the Rho superfamily. Collectively, we suggest that in the activation process, the role of the RhoA-GTP interaction with the PH domain is to release RhoA-GTP from the DH domain after activation, making it available to downstream effectors.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Brownfield BA, Richardson BC, Halaby SL, Fromme JC. Sec7 regulatory domains scaffold autoinhibited and active conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568272. [PMID: 38045260 PMCID: PMC10690275 DOI: 10.1101/2023.11.22.568272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here we report the cryoEM structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.
Collapse
Affiliation(s)
- Bryce A. Brownfield
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - Brian C. Richardson
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: The Hormel Institute, University of Minnesota, Austin MN 55912
| | - Steve L. Halaby
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: Abbvie Inc., Irvine, CA 92612
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
9
|
Fingleton E, Roche KW. Modeling human mutations to understand TRIO GEF function during development. Trends Neurosci 2023; 46:411-412. [PMID: 36959051 DOI: 10.1016/j.tins.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
In a recent study, Bonnet and colleagues leveraged in silico structure prediction and human genetic data to understand the molecular regulation of the Rac1-activating guanie nucleotide exchange factor (Rac1-GEF) domain of Trio. Their work sheds new light on the role of Trio during axon guidance and explores the mechanism by which Trio GEF function is regulated in health and dysregulated in disease.
Collapse
Affiliation(s)
- Erin Fingleton
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Graduate Partnership Program, Neuroscience Department, Brown University, Providence, RI, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Bonnet M, Roche F, Fagotto-Kaufmann C, Gazdagh G, Truong I, Comunale F, Barbosa S, Bonhomme M, Nafati N, Hunt D, Rodriguez MP, Chaudhry A, Shears D, Madruga M, Vansenne F, Curie A, Kajava AV, Baralle D, Fassier C, Debant A, Schmidt S. Pathogenic TRIO variants associated with neurodevelopmental disorders perturb the molecular regulation of TRIO and axon pathfinding in vivo. Mol Psychiatry 2023; 28:1527-1544. [PMID: 36717740 DOI: 10.1038/s41380-023-01963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
The RhoGEF TRIO is known to play a major role in neuronal development by controlling actin cytoskeleton remodeling, primarily through the activation of the RAC1 GTPase. Numerous de novo mutations in the TRIO gene have been identified in individuals with neurodevelopmental disorders (NDDs). We have previously established the first phenotype/genotype correlation in TRIO-associated diseases, with striking correlation between the clinical features of the individuals and the opposite modulation of RAC1 activity by TRIO variants targeting different domains. The mutations hyperactivating RAC1 are of particular interest, as they are recurrently found in patients and are associated with a severe form of NDD and macrocephaly, indicating their importance in the etiology of the disease. Yet, it remains unknown how these pathogenic TRIO variants disrupt TRIO activity at a molecular level and how they affect neurodevelopmental processes such as axon outgrowth or guidance. Here we report an additional cohort of individuals carrying a pathogenic TRIO variant that reinforces our initial phenotype/genotype correlation. More importantly, by performing conformation predictions coupled to biochemical validation, we propose a model whereby TRIO is inhibited by an intramolecular fold and NDD-associated variants relieve this inhibition, leading to RAC1 hyperactivation. Moreover, we show that in cultured primary neurons and in the zebrafish developmental model, these gain-of-function variants differentially affect axon outgrowth and branching in vitro and in vivo, as compared to loss-of-function TRIO variants. In summary, by combining clinical, molecular, cellular and in vivo data, we provide compelling new evidence for the pathogenicity of novel genetic variants targeting the TRIO gene in NDDs. We report a novel mechanism whereby the fine-tuned regulation of TRIO activity is critical for proper neuronal development and is disrupted by pathogenic mutations.
Collapse
Affiliation(s)
- Maxime Bonnet
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Fiona Roche
- Institut de la Vision, Sorbonne University, CNRS, INSERM, Paris, France
| | - Christine Fagotto-Kaufmann
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, SO16 5YA, UK.,Wessex Clinical Genetics Service, University Hospital Southampton National Health Service Foundation Trust, Southampton, SO16 5YA, UK
| | - Iona Truong
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.,Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Comunale
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Sonia Barbosa
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Marion Bonhomme
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Nicolas Nafati
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, SO16 5YA, UK
| | | | - Ayeshah Chaudhry
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marcos Madruga
- Hospital Viamed Santa Ángela De la Cruz, Sevilla, 41014, Spain
| | - Fleur Vansenne
- Department of Clinical Genetics, University Medical Center, Groningen, 9713 GZ, Groningen, The Netherlands
| | - Aurore Curie
- Reference Center for Intellectual Disability from rare causes, Department of Child Neurology, Woman Mother and Child Hospital, Hospices Civils de Lyon, Lyon Neuroscience Research Centre, CNRS UMR5292, INSERM U1028, Université de Lyon, Bron, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Southampton, SO16 5YA, UK
| | - Coralie Fassier
- Institut de la Vision, Sorbonne University, CNRS, INSERM, Paris, France
| | - Anne Debant
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| | - Susanne Schmidt
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|