1
|
Gowler PR, Arendt-Tranholm A, Turnbull J, Jha RR, Onion D, Kelly T, Kouraki A, Millns P, Gohir S, Franks S, Barrett DA, Valdes AM, Chapman V. Monocyte eukaryotic initiation factor 2 signaling differentiates 17-hydroxy-docosahexaenoic acid levels and pain. iScience 2025; 28:111862. [PMID: 39995860 PMCID: PMC11848799 DOI: 10.1016/j.isci.2025.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Our goal was to probe the potential transcriptomic basis for the relationship between plasma levels of the specialized pro-resolving precursor, 17-hydroxy-docosahexaenoic acid (17-HDHA) and chronic pain. Participants with osteoarthritis (average age of 62.3, 60% were female, n = 30) were stratified by levels of 17-HDHA and self-reported pain scores. RNAs from CD14++/CD16-/CD66b-/HLA-DR+ (classical) monocytes were sequenced and differentially expressed mRNAs were identified with DESeq2. QIAGEN ingenuity pathway analysis identified the top ranked canonical biological pathway to be eukaryotic initiation factor 2 (EIF2) signaling (lower activation level in the low 17-HDHA-high pain group compared to the high 17-HDHA-low pain group (Z score -3)), followed by EIF4 and P70S6K signaling pathways and mTOR signaling. Our approach provides insight into the biological pathways contributing to the association between 17-HDHA and chronic osteoarthritis (OA) pain, identifying EIF2 signaling, with known roles in osteoclast differentiation, OA pathology, and pain, as a potential downstream target.
Collapse
Affiliation(s)
- Peter R.W. Gowler
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Asta Arendt-Tranholm
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division and NIHR Nottingham Biomedical Research Centre, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Rakesh R. Jha
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division and NIHR Nottingham Biomedical Research Centre, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David Onion
- Flow Cytometry Facility, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tony Kelly
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Afroditi Kouraki
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Paul Millns
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Susan Franks
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division and NIHR Nottingham Biomedical Research Centre, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ana M. Valdes
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Victoria Chapman
- Pain Centre Versus Arthritis and NIHR Nottingham Biomedical Research Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Saha B, Haizel SA, Goss DJ. Mechanistic differences in eukaryotic initiation factor requirements for eIF4GI-driven cap-independent translation of structured mRNAs. J Biol Chem 2024; 300:107866. [PMID: 39384039 PMCID: PMC11570956 DOI: 10.1016/j.jbc.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Protein translation is globally downregulated under stress conditions. Many proteins that are synthesized under stress conditions use a cap-independent translation initiation pathway. A subset of cellular mRNAs that encode for these proteins contain stable secondary structures within their 5'UTR, and initiate cap-independent translation using elements called cap-independent translation enhancers or internal ribosome entry sites within their 5'UTRs. The interaction among initiation factors such as eukaryotic initiation factor 4E (eIF4E), eIF4A, and eIF4GI, especially in regulating the eIF4F complex during noncanonical translation initiation of different 5'UTR mRNAs, is poorly understood. Here, equilibrium-binding assays, CD studies and in vitro translation assays were used to elucidate the recruitment of these initiation factors to the highly structured 5'UTRs of fibroblast-growth factor 9 (FGF-9) and hypoxia inducible factor 1 subunit alpha (HIF-1α) encoding mRNAs. We showed that eIF4A and eIF4E enhanced eIF4GI's binding affinity to the uncapped 5'UTR of HIF-1α mRNA, inducing conformational changes in the protein/RNA complex. In contrast, these factors have no effect on the binding of eIF4GI to the 5'UTR of FGF-9 mRNA. Recently, Izidoro et al. reported that the interaction of 42nt unstructured RNA to human eIF4F complex is dominated by eIF4E and ATP-bound state of eIF4A. Here, we show that structured 5'UTR mRNA binding mitigates this requirement. Based on these observations, we describe two possible cap-independent translation mechanisms for FGF-9 and HIF-1α encoding mRNAs used by cells to mitigate cellular stress conditions.
Collapse
Affiliation(s)
- Baishakhi Saha
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA
| | - Solomon A Haizel
- PhD. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA; PhD. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; PhD. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA.
| |
Collapse
|
3
|
Villa N, Fraser CS. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. J Biol Chem 2024; 300:107242. [PMID: 38569933 PMCID: PMC11063902 DOI: 10.1016/j.jbc.2024.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Messenger RNA (mRNA) recruitment to the 40S ribosomal subunit is mediated by eukaryotic initiation factor 4F (eIF4F). This complex includes three subunits: eIF4E (m7G cap-binding protein), eIF4A (DEAD-box helicase), and eIF4G. Mammalian eIF4G is a scaffold that coordinates the activities of eIF4E and eIF4A and provides a bridge to connect the mRNA and 40S ribosomal subunit through its interaction with eIF3. While the roles of many eIF4G binding domains are relatively clear, the precise function of RNA binding by eIF4G remains to be elucidated. In this work, we used an eIF4G-dependent translation assay to reveal that the RNA binding domain (eIF4G-RBD; amino acids 682-720) stimulates translation. This stimulating activity is observed when eIF4G is independently tethered to an internal region of the mRNA, suggesting that the eIF4G-RBD promotes translation by a mechanism that is independent of the m7G cap and mRNA tethering. Using a kinetic helicase assay, we show that the eIF4G-RBD has a minimal effect on eIF4A helicase activity, demonstrating that the eIF4G-RBD is not required to coordinate eIF4F-dependent duplex unwinding. Unexpectedly, native gel electrophoresis and fluorescence polarization assays reveal a previously unidentified direct interaction between eIF4G and the 40S subunit. Using binding assays, our data show that this 40S subunit interaction is separate from the previously characterized interaction between eIF4G and eIF3. Thus, our work reveals how eIF4F can bind to the 40S subunit using eIF3-dependent and eIF3-independent binding domains to promote translation initiation.
Collapse
Affiliation(s)
- Nancy Villa
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California, USA
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California, USA.
| |
Collapse
|
4
|
Brito Querido J, Sokabe M, Díaz-López I, Gordiyenko Y, Fraser CS, Ramakrishnan V. The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A. Nat Struct Mol Biol 2024; 31:455-464. [PMID: 38287194 PMCID: PMC10948362 DOI: 10.1038/s41594-023-01196-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | | | | | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | | |
Collapse
|
5
|
Zhou F, Bocetti JM, Hou M, Qin D, Hinnebusch AG, Lorsch JR. Transcriptome-wide analysis of the function of Ded1 in translation preinitiation complex assembly in a reconstituted in vitro system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562452. [PMID: 37986768 PMCID: PMC10659408 DOI: 10.1101/2023.10.16.562452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S pre-initiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.
Collapse
Affiliation(s)
- Fujun Zhou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Julie M Bocetti
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Meizhen Hou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Daoming Qin
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Alan G Hinnebusch
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Jon R Lorsch
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
6
|
Villa N, Fraser CS. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560218. [PMID: 37808713 PMCID: PMC10557762 DOI: 10.1101/2023.09.29.560218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Messenger RNA (mRNA) recruitment to the 40S ribosomal subunit is mediated by eukaryotic initiation factor 4F (eIF4F). This complex includes 3 subunits: eIF4E (m 7 G cap binding protein), eIF4A (DEAD box helicase), and eIF4G. Mammalian eIF4G is a scaffold that coordinates the activities of eIF4E and eIF4A and provides a bridge to connect the mRNA and 40S ribosomal subunit through its interaction with eIF3. While the roles of many eIF4G binding domains are relatively clear, the precise function of RNA binding by eIF4G remains to be elucidated. In this work, we used an eIF4G-dependent translation assay to reveal that the RNA binding domain (eIF4G-RBD; amino acids 682-720) stimulates translation. This stimulating activity is observed when eIF4G is independently tethered to an internal region of the mRNA, suggesting that the eIF4G-RBD promotes translation by a mechanism that is independent of the m 7 G cap and mRNA tethering. Using a kinetic helicase assay, we show that the eIF4G-RBD has a minimal effect on eIF4A helicase activity, demonstrating that the eIF4G-RBD is not required to coordinate eIF4F-dependent duplex unwinding. Unexpectedly, native gel electrophoresis and fluorescence polarization assays reveal a previously unidentified direct interaction between eIF4G and the 40S subunit. Using binding assays, our data show that this 40S subunit interaction is separate from the previously characterized interaction between eIF4G and eIF3. Thus, our work reveals how eIF4F can bind to the 40S subunit using eIF3-dependent and eIF3-independent binding domains to promote translation initiation.
Collapse
|
7
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|