1
|
Calegari-Alves YP, da Rosa RL, Costa RP, Innocente-Alves C, Faustino AM, Yates JR, Beys-da-Silva WO, Santi L. Lavandula angustifolia oil induces oxidative stress, stiffening of membranes, and cell wall in Cryptococcus spp. Can J Microbiol 2025; 71:1-13. [PMID: 39620440 DOI: 10.1139/cjm-2024-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The Cryptococcus neoformans and Cryptococcus gattii species complexes are the etiological agents of cryptococcosis, a disease responsible for 181 000 deaths annually worldwide due to late diagnosis and limited treatment options. Studies focusing on the identification of new substances with antifungal activity, such as essential oils (EOs), are urgently needed. While the antifungal effects of EO have already been suggested, their mechanism of action at the molecular level still requires evaluation. In this work, we assessed the molecular changes induced by the exposure of Cryptococus neoformans (H99) and Cryptococcus deuterogatti (R265) to lavender essential oil (LEO) using a morphological and proteomics approach. The identified proteins were categorized by Gene Ontology according to biological processes and molecular functions, and Kyoto Encyclopedia of Genes and Genomes pathway analysis was also conducted. Our findings indicate that LEO creates a stressful environment in both strains; however, the response to this stimulus differs between the two species. In C. neoformans, changes were observed in energy metabolism and pathways related to alternative sources of energy and oxidative stress response. In C. deuterogatti, changes were identified in pathways related to cellular architecture, implying that the cell underwent morphological changes such as membrane and cell wall stiffening.
Collapse
Affiliation(s)
- Yohana Porto Calegari-Alves
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
| | - Rafael Lopes da Rosa
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
| | - Renata Pereira Costa
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| | - Camila Innocente-Alves
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
| | - Aline Martins Faustino
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research - La Jolla, CA 92122, USA
| | - Walter Orlando Beys-da-Silva
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| | - Lucélia Santi
- Postgraduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - Porto Alegre, RS 91501-970, Brazil
- Faculty of Pharmacy, Federal University of Rio Grande do Sul - Porto Alegre, RS 90610-000, Brazil
| |
Collapse
|
2
|
Sun M, Dai P, Cao Z, Dong J. Purine metabolism in plant pathogenic fungi. Front Microbiol 2024; 15:1352354. [PMID: 38384269 PMCID: PMC10879430 DOI: 10.3389/fmicb.2024.1352354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
In eukaryotic cells, purine metabolism is the way to the production of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and plays key roles in various biological processes. Purine metabolism mainly consists of de novo, salvage, and catabolic pathways, and some components of these pathways have been characterized in some plant pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae and wheat head blight fungus Fusarium graminearum. The enzymatic steps of the de novo pathway are well-conserved in plant pathogenic fungi and play crucial roles in fungal growth and development. Blocking this pathway inhibits the formation of penetration structures and invasive growth, making it essential for plant infection by pathogenic fungi. The salvage pathway is likely indispensable but requires exogenous purines, implying that purine transporters are functional in these fungi. The catabolic pathway balances purine nucleotides and may have a conserved stage-specific role in pathogenic fungi. The significant difference of the catabolic pathway in planta and in vitro lead us to further explore and identify the key genes specifically regulating pathogenicity in purine metabolic pathway. In this review, we summarized recent advances in the studies of purine metabolism, focusing on the regulation of pathogenesis and growth in plant pathogenic fungi.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | | | | | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Fishchuk L, Skavinska O, Ievseienkova O, Rossokha Z, Sheiko L. GENETIC PREDICTORS OF TOXIC EFFECTS OF METHOTREXATE IN CANCER PATIENTS. Exp Oncol 2024; 45:399-408. [PMID: 38328850 DOI: 10.15407/exp-oncology.2023.04.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Today, methotrexate (MTX) is used in combination with other medicines to treat a wide range of malignancies. Despite its proven high efficacy, MTX often causes serious side effects, which may result in the need to reduce the dose of MTX or discontinue the drug altogether. This, in turn, can provoke the development of MTX resistance and cancer progression. Predicting the risk of MTX-induced toxicity is currently difficult due to the variability of pharmacokinetics and pharmacodynamics in different patients, so the scientific literature is intensively searching for potential biomarkers. Based on the data available in the current literature, we analyzed the relationship between variants in the genes encoding the key components of MTX intracellular metabolism and the MTX-induced side effects and drug response. According to the results of our work, the most studied variants are those of the SLC19A1 gene, which encodes the reduced folate carrier protein 1, and the MTHFR gene, which encodes the enzyme methylenetetrahydrofolate reductase. Studies of the effect of methylation of the promoter regions of genes on the therapeutic effect of MTX are also very promising. In conclusion, the study of molecular genetic markers of MTX toxicity is extremely relevant and necessary because it can help to avoid the effect of multidrug resistance and improve the quality of life and survival of patients.
Collapse
Affiliation(s)
- L Fishchuk
- State Institution "Reference-center for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - O Skavinska
- State Institution "Reference-center for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - O Ievseienkova
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Z Rossokha
- State Institution "Reference-center for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - L Sheiko
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Alshamrani S, Mashraqi MM, Alzamami A, Alturki NA, Almasoudi HH, Alshahrani MA, Basharat Z. Mining Autoimmune-Disorder-Linked Molecular-Mimicry Candidates in Clostridioides difficile and Prospects of Mimic-Based Vaccine Design: An In Silico Approach. Microorganisms 2023; 11:2300. [PMID: 37764144 PMCID: PMC10536613 DOI: 10.3390/microorganisms11092300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular mimicry, a phenomenon in which microbial or environmental antigens resemble host antigens, has been proposed as a potential trigger for autoimmune responses. In this study, we employed a bioinformatics approach to investigate the role of molecular mimicry in Clostridioides difficile-caused infections and the induction of autoimmune disorders due to this phenomenon. Comparing proteomes of host and pathogen, we identified 23 proteins that exhibited significant sequence homology and were linked to autoimmune disorders. The disorders included rheumatoid arthritis, psoriasis, Alzheimer's disease, etc., while infections included viral and bacterial infections like HIV, HCV, and tuberculosis. The structure of the homologous proteins was superposed, and RMSD was calculated to find the maximum deviation, while accounting for rigid and flexible regions. Two sequence mimics (antigenic, non-allergenic, and immunogenic) of ≥10 amino acids from these proteins were used to design a vaccine construct to explore the possibility of eliciting an immune response. Docking analysis of the top vaccine construct C2 showed favorable interactions with HLA and TLR-4 receptor, indicating potential efficacy. The B-cell and T-helper cell activity was also simulated, showing promising results for effective immunization against C. difficile infections. This study highlights the potential of C. difficile to trigger autoimmunity through molecular mimicry and vaccine design based on sequence mimics that trigger a defensive response.
Collapse
Affiliation(s)
- Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia;
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Hassan H. Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | | |
Collapse
|
5
|
Li MX, Wu XT, Jing WQ, Hou WK, Hu S, Yan W. Inosine enhances tumor mitochondrial respiration by inducing Rag GTPases and nascent protein synthesis under nutrient starvation. Cell Death Dis 2023; 14:492. [PMID: 37532694 PMCID: PMC10397262 DOI: 10.1038/s41419-023-06017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Metabolic heterogeneity of tumor microenvironment (TME) is a hallmark of cancer and a big barrier to cancer treatment. Cancer cells display diverse capacities to utilize alternative carbon sources, including nucleotides, under poor nutrient circumstances. However, whether and how purine, especially inosine, regulates mitochondrial metabolism to buffer nutrient starvation has not been well-defined yet. Here, we identify the induction of 5'-nucleotidase, cytosolic II (NT5C2) gene expression promotes inosine accumulation and maintains cancer cell survival in the nutrient-poor region. Inosine elevation further induces Rag GTPases abundance and mTORC1 signaling pathway by enhancing transcription factor SP1 level in the starved tumor. Besides, inosine supplementary stimulates the synthesis of nascent TCA cycle enzymes, including citrate synthesis (CS) and aconitase 1 (ACO1), to further enhance oxidative phosphorylation of breast cancer cells under glucose starvation, leading to the accumulation of iso-citric acid. Inhibition of the CS activity or knockdown of ACO1 blocks the rescue effect of inosine on cancer survival under starvation. Collectively, our finding highlights the vital signal role of inosine linking mitochondrial respiration and buffering starvation, beyond serving as direct energy carriers or building blocks for genetic code in TME, shedding light on future cancer treatment by targeting inosine metabolism.
Collapse
Affiliation(s)
- Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Ting Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Qiang Jing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Kui Hou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
6
|
Han L, Wu Y, Xiong S, Liu T. Ubiquitin Degradation of the AICAR Transformylase/IMP Cyclohydrolase Ade16 Regulates the Sexual Reproduction of Cryptococcus neoformans. J Fungi (Basel) 2023; 9:699. [PMID: 37504688 PMCID: PMC10381356 DOI: 10.3390/jof9070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
F-box protein is a key protein of the SCF E3 ubiquitin ligase complex, responsible for substrate recognition and degradation through specific interactions. Previous studies have shown that F-box proteins play crucial roles in Cryptococcus sexual reproduction. However, the molecular mechanism by which F-box proteins regulate sexual reproduction in C. neoformans is unclear. In the study, we discovered the AICAR transformylase/IMP cyclohydrolase Ade16 as a substrate of Fbp1. Through protein interaction and stability experiments, we demonstrated that Ade16 is a substrate for Fbp1. To examine the role of ADE16 in C. neoformans, we constructed the iADE16 strains and ADE16OE strains to analyze the function of Ade16. Our results revealed that the iADE16 strains had a smaller capsule and showed growth defects under NaCl, while the ADE16OE strains were sensitive to SDS but not to Congo red, which is consistent with the stress phenotype of the fbp1Δ strains, indicating that the intracellular protein expression level after ADE16 overexpression was similar to that after FBP1 deletion. Interestingly, although iADE16 strains can produce basidiospores normally, ADE16OE strains can produce mating mycelia but not basidiospores after mating, which is consistent with the fbp1Δmutant strains, suggesting that Fbp1 is likely to regulate the sexual reproduction of C. neoformans through the modulation of Ade16. A fungal nuclei development assay showed that the nuclei of the ADE16OE strains failed to fuse in the bilateral mating, indicating that Ade16 plays a crucial role in the regulation of meiosis during mating. In summary, our findings have revealed a new determinant factor involved in fungal development related to the post-translational regulation of AICAR transformylase/IMP cyclohydrolase.
Collapse
Affiliation(s)
- Liantao Han
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
| | - Yujuan Wu
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
| | - Sichu Xiong
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
| | - Tongbao Liu
- State Key Laboratory of Resource Insects, Southwest University Medical Research Institute, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|