1
|
Liu H, Zhou C, Yan Z, Yang H, Zhao Y, Tian R, Bo X, Zhao L, Ren W. Sialyltransferase gene signature as a predictor of prognosis and therapeutic response in kidney renal clear cell carcinoma. Discov Oncol 2025; 16:785. [PMID: 40377806 PMCID: PMC12084485 DOI: 10.1007/s12672-025-02566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Sialyltransferases are enzymes involved in the addition of sialic acid to glycoproteins and glycolipids, influencing various physiological and pathological processes. The expression and function of sialyltransferases in tumors, particularly in kidney renal clear cell carcinoma (KIRC) remained underexplored. This study aimed to develop a prognostic model based on sialyltransferase-related genes (SRGs) to predict the prognosis and treatment response of patients with KIRC. METHODS We utilized RNA-Seq data of KIRC from The Cancer Genome Atlas (TCGA) database, selecting samples with survival data and clinical outcomes. Somatic mutation and neoantigen data were analyzed using the "maftools" package, and genes involved in the sialylation process were identified through the Molecular Signatures Database. Validation cohorts of KIRC samples were obtained from the International Cancer Genome Consortium (ICGC) database. Single-cell RNA sequencing (scRNA-seq) data were downloaded from the Gene Expression Omnibus (GEO) platform, and preprocessing, normalization, and dimensionality reduction analyses were conducted using the "Seurat" package. Differentially expressed sialylation genes were identified using the "limma" package, and their functional enrichment was assessed via Gene Ontology GO and KEGG analyses. Consensus clustering analysis was performed to identify molecular subtypes of KIRC based on sialylation, and drug sensitivity of different subtypes was evaluated using the "pRRophetic" package. A risk signature model comprising 5 SRGs was constructed through univariate and multivariate Cox regression analyses and validated in both the TCGA and ICGC cohorts. The "estimate" package was utilized to calculate immune and stromal scores for each KIRC sample, assessing the tumor immune microenvironment characteristics of different subtypes. RESULTS Analysis of scRNA-seq data identified 25 cell subtypes, categorized into 9 cell types. CD4 + memory cells exhibited the highest potential interactions with other cell subtypes. We identified 14 differentially expressed sialylation genes and confirmed their enrichment in various biological pathways through GO and KEGG analyses. Consensus clustering analysis based on sialylation identified 2 molecular subtypes: C1 and C2. The C2 subtype demonstrated higher sialylation scores and poorer prognosis. Drug sensitivity analysis indicated that the C1 subtype had better responses to Dasatinib and Lapatinib, whereas the C2 subtype was more sensitive to Epothilone B and Vinorelbine. The risk signature model, constructed with five distinct SRGs, exhibited strong predictive accuracy, as indicated by Area Under the Curve (AUC) values of 0.68, 0.69, and 0.70 for 1-, 3-, and 5-year survival, respectively, across both the TCGA and ICGC validation cohorts. Immune microenvironment analysis revealed that the C1 subtype exhibited higher immune and stromal scores, while the C2 subtype showed significantly enhanced expression of immune checkpoint genes. CONCLUSION This study successfully developed a prognostic model based on SRGs, effectively predicting the prognosis and drug response of KIRC patients. The model demonstrated significant predictive performance and potential clinical application value. Furthermore, the study highlighted the critical role of sialylation in KIRC, offering new insights into its underlying mechanisms in tumor biology. These findings could guide personalized treatment strategies for KIRC patients, emphasizing the importance of sialylation in cancer prognosis and therapy.
Collapse
Affiliation(s)
- Huiyu Liu
- Department of Urology, Dongying People's Hospital, Dongying, 257091, Shandong, China.
| | - Changwei Zhou
- Department of Urology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Zaichun Yan
- Department of Urology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Hairong Yang
- Department of Critical Care Medicine, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Yun Zhao
- Department of Urology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Rui Tian
- Dongying District Traditional Chinese Medicine Hospital, Dongying, 257029, Shandong, China
| | - Xuejun Bo
- Department of Urology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Leizuo Zhao
- Department of Urology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Wei Ren
- Department of Urology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| |
Collapse
|
2
|
Mitra R, Pentland K, Kolev S, Eden M, Levine E, Oakes JM, Ebong EE. Co-therapy with S1P and heparan sulfate derivatives to restore endothelial glycocalyx and combat pro-atherosclerotic endothelial dysfunction. Life Sci 2025:123662. [PMID: 40280298 DOI: 10.1016/j.lfs.2025.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS Endothelial cell (EC) glycocalyx (GCX) shedding from disturbed blood flow and chemical factors leads to low-density lipoprotein infiltration, reduced nitric oxide synthesis, vascular dysfunction and atherosclerosis. This study evaluates a therapy combining sphingosine-1-phosphate (S1P) and heparin (heparan sulfate derivative). We hypothesized that heparin/S1P co-treatment repairs mechanically damaged EC GCX in disturbed flow (DF) regions and restores anti-atherosclerotic mechanotransduction to treat cardiovascular disease. MATERIALS AND METHODS We used a parallel-plate flow chamber to simulate flow conditions in vitro and a partial carotid ligation mouse model to mimic DF in vivo. Heparin and albumin-bound S1P were administered to assess their reparative effects on the endothelial GCX. Fluorescent staining, confocal microscopy, and ultrasound evaluated endothelial cell function and endothelial-dependent vascular function. Barrier functionality was assessed via macrophage uptake. Heparin/S1P mechanism-of-action insights were gained through fluid dynamics simulations and staining of GCX synthesis enzyme and S1P receptor. Statistical analyses validated the results. KEY FINDINGS The in vitro data showed that heparin/S1P therapy improves DF-conditioned ECs by restoring GCX and elevating vasodilator eNOS (endothelial-type nitric oxide synthase) expression. In vivo studies confirmed GCX degradation, vessel inflammation, hyperpermeability, and wall thickening in the mouse model's partially ligated left carotid artery. Heparin/S1P treatment restored GCX thickness and coverage, reduced inflammation and hyperpermeability, and inhibited vessel wall thickening. SIGNIFICANCE This work introduces a new approach to regenerating the EC GCX and restoring its function in ECs under DF conditions, offering a groundbreaking solution for preventing cardiovascular diseases like atherosclerosis.
Collapse
Affiliation(s)
- Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Kaleigh Pentland
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Svilen Kolev
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Matthew Eden
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Erel Levine
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eno E Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States; Department of Bioengineering, Northeastern University, Boston, MA, United States; Department of Neuroscience, Albert Einstein College of Medicine, NY, New York, United States.
| |
Collapse
|
3
|
Ren X, Teng Y, Xie K, He X, Chen G, Zhang K, Liao Q, Zhang J, Zhou X, Zhu Y, Song W, Lin Y, Zhang Y, Xu Z, Maeshige N, Liang X, Su D, Sun P, Ding Y. REG3A secreted by peritumoral acinar cells enhances pancreatic ductal adenocarcinoma progression via activation of EGFR signaling. Cell Commun Signal 2025; 23:96. [PMID: 39966859 PMCID: PMC11837727 DOI: 10.1186/s12964-025-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Regenerating family member 3A (REG3A) is involved in the development of multiple malignant tumors, including pancreatic ductal adenocarcinoma (PDAC). However, any role of REG3A in PDAC remains controversial due to its unclear tissue localization or direct receptors, and complex downstream signal transductions. METHODS Morphological analysis and public multi-omics data retrieval were was utilized to elucidate the tissue localization of REG3A in PDAC. To ascertain the pro-oncogenic role of secreted REG3A, experiments were conducted using in vitro PDAC cell lines and in vivo tumor formation assays in nude mice. A battery of investigative techniques, including RNA sequencing, phospho-kinase arrays, western blot analyses, in silico docking simulations, gene truncation strategies, and co-immunoprecipitation, were employed to delve into the downstream signaling transduction pathways induced by REG3A. RESULTS In this study, we confirmed an association between increased serum levels of REG3A and poor prognosis in patients with PDAC. Morphological staining and bioinformatic analysis showed that REG3A was mainly expressed in peritumoral acinar cells that were spatially close to tumor region, while it was almost negative in PDAC tumor cells. Peritumoral REG3A expression levels, but not tumoral REG3A, were highly correlated with PDAC progression. Further in vitro experiments including RNA sequencing and molecular biological assays revealed that secreted REG3A could directly bind to the epidermal growth factor receptor (EGFR), an important pro-oncogene involved in cellular proliferation, and subsequently activate the downstream mitogen-activated protein kinase (MAPK) signals to promote PDAC tumor cell growth. CONCLUSION Taken together, our data indicated that increased expression of REG3A in peritumoral acinar cells acts as a specific event to indicate PDAC progression, and verified EGFR as a possible target of REG3A, providing mechanistic insights into the role of REG3A, the diagnostic method and therapeutic strategy of PDAC.
Collapse
Affiliation(s)
- Xiaojing Ren
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Teng
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao He
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gang Chen
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qingyi Liao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaohang Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yating Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenyu Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yuege Lin
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Ding
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Costa AF, Teixeira A, Reis CA, Gomes C. Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs. Expert Opin Drug Discov 2025; 20:193-203. [PMID: 39749684 DOI: 10.1080/17460441.2024.2444375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cellcell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and wellcoordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancerassociated glycans, which impact glycandependent biological roles. AREAS COVERED In this review, the authors discuss the importance of targeting cancerassociated glycans through potent glycan biosynthesis inhibitors. It focuses on the use of analogs, providing an overview of findings involving these in cancer. The highly explored fluorinated monosaccharide analogs targeting aberrant glycosylation are described, aiming to inspire advances in the field. EXPERT OPINION Altered glycosylation, such as increased sialylation and fucosylation, is a feature in cancer and has been shown to play key roles in several malignant properties of cancer cells. Strategies aiming at remodeling cancer cells´ glycome are emerging and present a huge potential for cancer therapy. Fluorinated monosaccharides have been gathering promising preclinical results as novel cancer drugs. Nevertheless, cancer specific targeting strategies must be considered to avoid significant sideeffects.
Collapse
Affiliation(s)
- Ana F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Mitra R, Pentland K, Kolev S, Eden M, Levine E, Oakes JM, Ebong EE. Co-Therapy with S1P and Heparan Sulfate Derivatives to Restore Endothelial Glycocalyx and Combat Pro-Atherosclerotic Endothelial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622347. [PMID: 39574692 PMCID: PMC11581019 DOI: 10.1101/2024.11.06.622347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Endothelial cell (EC) glycocalyx (GCX) shedding due to disturbed blood flow and chemical factors leads to low-density lipoprotein infiltration and reduced nitric oxide synthesis, causing vascular dysfunction and atherosclerosis. This study evaluates a novel therapy combining sphingosine-1-phosphate (S1P) and heparin (heparan sulfate derivative). We hypothesized that heparin/S1P would repair mechanically damaged EC GCX in disturbed flow (DF) regions and restore anti-atherosclerotic mechanotransduction function, addressing cardiovascular disease. We used a parallel-plate flow chamber to simulate flow conditions in vitro and a partial carotid ligation mouse model to mimic DF in vivo. Heparin and albumin-bound S1P were administered to assess their reparative effects on the endothelial GCX. Immunocytochemistry, fluorescent staining, confocal microscopy, cellular alignment studies, and ultrasound were performed to evaluate EC function and endothelial-dependent vascular function. Barrier functionality was assessed via macrophage uptake. Heparin/S1P mechanism-of-action insights were gained through fluid dynamics simulations and staining of GCX synthesis enzyme as well as S1P receptor. Statistical analyses validated results. In vitro data showed that heparin/S1P therapy improves the function of DF-conditioned ECs by restoring EC GCX and promoting EC alignment and elevated vasodilator eNOS (endothelial-type nitric oxide synthase) expression. The in vivo studies confirmed GCX degradation, increased vessel inflammation and hyperpermeability, and vessel wall thickening in the partially ligated left carotid artery. Heparin/S1P treatment restored GCX in the left carotid artery, enhancing GCX thickness and coverage of the blood vessel wall. This work advances a new approach to regenerating the EC GCX and restoring its function in ECs under DF conditions.
Collapse
|
6
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Li Y, Su H, Liu K, Zhao Z, Wang Y, Chen B, Xia J, Yuan H, Huang DS, Gu Y. Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: a rank-based qualitative transcriptome signature. World J Surg Oncol 2024; 22:49. [PMID: 38331878 PMCID: PMC10854045 DOI: 10.1186/s12957-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.
Collapse
Affiliation(s)
- Yawei Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hang Su
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaidong Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuquan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Xia
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huating Yuan
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - De-Shuang Huang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Cao P, Chen M, Zhang T, Zheng Q, Liu M. A sialyltransferases-related gene signature serves as a potential predictor of prognosis and therapeutic response for bladder cancer. Eur J Med Res 2023; 28:515. [PMID: 37968767 PMCID: PMC10647093 DOI: 10.1186/s40001-023-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Aberrant glycosylation, catalyzed by the specific glycosyltransferase, is one of the dominant features of cancers. Among the glycosyltransferase subfamilies, sialyltransferases (SiaTs) are an essential part which has close linkages with tumor-associated events, such as tumor growth, metastasis and angiogenesis. Considering the relationship between SiaTs and cancer, the current study attempted to establish an effective prognostic model with SiaTs-related genes (SRGs) to predict patients' outcome and therapeutic responsiveness of bladder cancer. METHODS RNA-seq data, clinical information and genomic mutation data were downloaded (TCGA-BLCA and GSE13507 datasets). The comprehensive landscape of the 20 SiaTs was analyzed, and the differentially expressed SiaTs-related genes were screened with "DESeq2" R package. ConsensusClusterPlus was applied for clustering, following with survival analysis with Kaplan-Meier curve. The overall survival related SRGs were determined with univariate Cox proportional hazards regression analysis, and the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to generate a SRGs-related prognostic model. The predictive value was estimated with Kaplan-Meier plot and the receiver operating characteristic (ROC) curve, which was further validated with the constructed nomogram and decision curve. RESULTS In bladder cancer tissues, 17 out of the 20 SiaTs were differentially expressed with CNV changes and somatic mutations. Two SiaTs_Clusters were determined based on the expression of the 20 SiaTs, and two gene_Clusters were identified based on the expression of differentially expressed genes between SiaTs_Clusters. The SRGs-related prognostic model was generated with 7 key genes (CD109, TEAD4, FN1, TM4SF1, CDCA7L, ATOH8 and GZMA), and the accuracy for outcome prediction was validated with ROC curve and a constructed nomogram. The SRGs-related prognostic signature could separate patients into high- and low-risk group, where the high-risk group showed poorer outcome, more abundant immune infiltration, and higher expression of immune checkpoint genes. In addition, the risk score derived from the SRGs-related prognostic model could be utilized as a predictor to evaluate the responsiveness of patients to the medical therapies. CONCLUSIONS The SRGs-related prognostic signature could potentially aid in the prediction of the survival outcome and therapy response for patients with bladder cancer, contributing to the development of personalized treatment and appropriate medical decisions.
Collapse
Affiliation(s)
- Penglong Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Mingying Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Tianya Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, Liaoning, China.
| | - Mulin Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China.
| |
Collapse
|
10
|
Sammon D, Krueger A, Busse-Wicher M, Morgan RM, Haslam SM, Schumann B, Briggs DC, Hohenester E. Molecular mechanism of decision-making in glycosaminoglycan biosynthesis. Nat Commun 2023; 14:6425. [PMID: 37828045 PMCID: PMC10570366 DOI: 10.1038/s41467-023-42236-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS.
Collapse
Affiliation(s)
- Douglas Sammon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Marta Busse-Wicher
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Abzena, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Rhodri Marc Morgan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- ZoBio, 2333 CH, Leiden, Netherlands
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - David C Briggs
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|