1
|
Alves RL, Gonçalves A, Voytyuk I, Harrison DC. Behaviour profile characterization of PS19 and rTg4510 tauopathy mouse models: A systematic review and a meta-analysis. Exp Neurol 2025; 389:115234. [PMID: 40185359 DOI: 10.1016/j.expneurol.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The rTg4510 and PS19 mouse models are widely used in tauopathy research. Alzheimer's disease (AD) is the most prevalent among tauopathies. Behavioural tests are frequently used to assess emotional, cognitive, and motor behaviours in mouse models of AD. Cognitive deficits begin to manifest in rTg4510 mice around 3 months of age and in PS19 mice around 6 months. However, it's widely recognized that behavioural outcomes can vary due to environmental factors, health status, and husbandry practices, causing phenotypic differences between facilities. This study aims to consolidate current knowledge of the behavioural phenotypes of these two mouse models. We conducted a comprehensive literature review using keyword searches with Boolean operators across databases up to January 2024. Additional studies were included from manual searches. A total of 23 articles were reviewed for rTg4510 mice and 52 for PS19 mice. We extracted methodological details and key findings from each study. Results for rTg4510 mice show consistent findings regarding locomotion, memory and learning, and neurological dysfunction. However, the limited studies on motor and balance behaviour revealed no significant differences, while anxiety-like behaviour showed some inconsistencies. PS19 mice demonstrate more robust results for anxiety-like behaviour, memory and learning, and locomotion, while findings for balance and coordination are more inconsistent. Although there is overall coherence in certain aspects of the behavioural profiles of these tauopathy mouse models, it is crucial to recognize experimental heterogeneity and profile behavioural baselines to optimize the testing of both genetic and pharmacological interventions.
Collapse
Affiliation(s)
- Renata L Alves
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom.
| | | | - Iryna Voytyuk
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - David C Harrison
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| |
Collapse
|
2
|
Mo H, Sun K, Hou Y, Ruan Z, He Z, Liu H, Li L, Wang Z, Guo F. Inhibition of PA28γ expression can alleviate osteoarthritis by inhibiting endoplasmic reticulum stress and promoting STAT3 phosphorylation. Bone Joint Res 2024; 13:659-672. [PMID: 39564812 PMCID: PMC11577458 DOI: 10.1302/2046-3758.1311.bjr-2023-0361.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Haokun Mo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Du Y, Chen H, Zhou L, Guo Q, Gong S, Feng S, Guan Q, Shi P, Lv T, Guo Y, Yang C, Sun P, Li K, Xu S, Li L. REGγ is essential to maintain bone homeostasis by degrading TRAF6, preventing osteoporosis. Proc Natl Acad Sci U S A 2024; 121:e2405265121. [PMID: 39536082 PMCID: PMC11588133 DOI: 10.1073/pnas.2405265121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Primary osteoporosis, manifesting as decreased bone mass and increased bone fragility, is a "silent disease" that is often ignored until a bone breaks. Accordingly, it is urgent to develop reliable biomarkers and novel therapeutic strategies for osteoporosis treatment. Here, we identified REGγ as a potential biomarker of osteoporotic populations through proteomics analysis. Next, we demonstrated that REGγ deficiency increased osteoclast activity and triggered bone mass loss in REGγ knockout (KO) and bone marrow-derive macrophage (BMM)-conditional REGγ KO mice. However, the osteoclast activity decreased in BMM-conditional REGγ overexpression mice. Mechanistically, we defined that REGγ-20S proteasome directly degraded TRAF6 to inhibit bone absorption in a ubiquitin-independent pathway. More importantly, BMM-conditional Traf6 KO with REGγ KO mice could "rescue" the osteoporosis phenotypes. Based on NIP30 (a REGγ "inhibitor") dephosphorylation by CKII inhibition activated the ubiquitin-independent degradation of TRAF6, we selected TTP22, an inhibitor of CKII, and defined that TTP22 could alleviate osteoporosis in vitro and in vivo. Overall, our study reveals a unique function of NIP30/REGγ/TRAF6 axis in osteoporosis and provides a potential therapeutic drug TTP22 for osteoporosis.
Collapse
Affiliation(s)
- Yingying Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Hui Chen
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai200240, China
- Joint Center for Translational Medicine, Shanghai Fifth People’s Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai200241, China
- School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, China
| | - Qunfeng Guo
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai200003, China
| | - Shuangming Gong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Siyuan Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Qiujing Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Tongxin Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Yilan Guo
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai200241, China
| | - Cheng Yang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai200003, China
| | - Peng Sun
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai200241, China
| | - Kun Li
- Health Science Center, East China Normal University, Shanghai200241, China
| | - Shuogui Xu
- Department of Emergency and Trauma, The First Affiliated Hospital of Naval Medical University, Shanghai200433, China
| | - Lei Li
- Joint Center for Translational Medicine, Shanghai Fifth People’s Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai200241, China
- School of Life Sciences, East China Normal University, Shanghai200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing401120, China
- East China Normal University, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai200241, China
| |
Collapse
|
4
|
Liu T, Xia S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J 2024; 43:447-463. [PMID: 38622349 DOI: 10.1007/s10930-024-10197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Thomas T, Salcedo-Tacuma D, Smith DM. Structure, Function, and Allosteric Regulation of the 20S Proteasome by the 11S/PA28 Family of Proteasome Activators. Biomolecules 2023; 13:1326. [PMID: 37759726 PMCID: PMC10526260 DOI: 10.3390/biom13091326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The proteasome, a complex multi-catalytic protease machinery, orchestrates the protein degradation essential for maintaining cellular homeostasis, and its dysregulation also underlies many different types of diseases. Its function is regulated by many different mechanisms that encompass various factors such as proteasome activators (PAs), adaptor proteins, and post-translational modifications. This review highlights the unique characteristics of proteasomal regulation through the lens of a distinct family of regulators, the 11S, REGs, or PA26/PA28. This ATP-independent family, spanning from amoebas to mammals, exhibits a common architectural structure; yet, their cellular biology and criteria for protein degradation remain mostly elusive. We delve into their evolution and cellular biology, and contrast their structure and function comprehensively, emphasizing the unanswered questions regarding their regulatory mechanisms and broader roles in proteostasis. A deeper understanding of these processes will illuminate the roles of this regulatory family in biology and disease, thus contributing to the advancement of therapeutic strategies.
Collapse
Affiliation(s)
- Taylor Thomas
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|