1
|
Wang WG, Yang MJ, Sheng ZB, Tao LM, Xu WP, Zhang Y. Avermectin induces photoreceptor functional impairment and color vision deficits in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138085. [PMID: 40174454 DOI: 10.1016/j.jhazmat.2025.138085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
The effects of avermectin on the visual function of nontarget organisms, particularly aquatic organisms, require further evaluation. Avermectin can come into direct contact with the eyes of nontarget organisms through air or water. However, few studies have investigated the safety of avermectin in the eyes of nontarget organisms. Therefore, it is important to assess its safety in the eyes of nontarget organisms. The results demonstrate that avermectin induces ocular morphological abnormalities, retinal structural damage, and decreased locomotor behavior in zebrafish larvae. Further analyses indicate that avermectin-induced ocular toxicity in zebrafish larvae is associated with the thyroid hormone and retinoic acid signaling pathways. The evaluation of the effect of avermectin on the visual function of adult zebrafish reveals that avermectin induces changes in the sensitivity of adult zebrafish to different light wavelengths and colors. Male adult zebrafish showed greater variation, suggesting possible sex differences. These results indicate that avermectin induces ocular developmental damage in zebrafish larvae and visual behavioral abnormalities in adult zebrafish.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Jun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineer Research Center of Reproduction Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Zhu-Bo Sheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. Sci Rep 2025; 15:10404. [PMID: 40140485 PMCID: PMC11947307 DOI: 10.1038/s41598-025-93825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Tet family methylcytosine dioxygenases recognize and oxidize 5-methyl-cytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2-/-;tet3-/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2-/-;tet3-/- retinal phenotype. Our results identified defects in tet2-/-;tet3-/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627071. [PMID: 39713311 PMCID: PMC11661121 DOI: 10.1101/2024.12.06.627071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tet enzymes are epigenetic modifiers that impact gene expression via 5mC to 5hmC oxidation. Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2 -/- ;tet3 -/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2 -/- ;tet3 -/- retinal phenotype. Our results identified defects in the tet2 -/- ;tet3 -/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
4
|
Otsuka Y, Imamura K, Oishi A, Asakawa K, Kondo T, Nakai R, Suga M, Inoue I, Sagara Y, Tsukita K, Teranaka K, Nishimura Y, Watanabe A, Umeyama K, Okushima N, Mitani K, Nagashima H, Kawakami K, Muguruma K, Tsujikawa A, Inoue H. Phototoxicity avoidance is a potential therapeutic approach for retinal dystrophy caused by EYS dysfunction. JCI Insight 2024; 9:e174179. [PMID: 38646933 PMCID: PMC11141876 DOI: 10.1172/jci.insight.174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.
Collapse
Affiliation(s)
- Yuki Otsuka
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiko Imamura
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Takayuki Kondo
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Risako Nakai
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mika Suga
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ikuyo Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yukako Sagara
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
| | - Kayoko Tsukita
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kaori Teranaka
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Nishimura
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Watanabe
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Nanako Okushima
- Division of Systems Medicine and Gene Therapy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kohnosuke Mitani
- Division of Systems Medicine and Gene Therapy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruhisa Inoue
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
5
|
Margo TE, Chen FS, Chen YJ, Chen CK. Grk1 Missense Mutations in Type II Oguchi Disease: A Literature Review. ANNALS OF BIOMEDICAL RESEARCH 2024; 5:1-7. [PMID: 39906762 PMCID: PMC11793915 DOI: 10.61545/abr-5-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Oguchi disease is a rare form of congenital stationary night blindness resulting from arrestin-1 (SAG) or rhodopsin kinase (GRK1) loss-of-function mutations. Unlike other congenital nyctalopias, patients with Oguchi disease can reach the dark-adapted state, albeit only after several hours of sustained darkness exposure. The mechanism underlying rhodopsin kinase dysfunction in Oguchi disease remains understudied. Previous research utilized the Grk1 knockout mice to reveal its role in phototransduction, the process that transduces light into neuronal signals in rod and cone photoreceptors. By studying Grk1 missense mutations via a knock-in approach, a more complete picture of the Oguchi disease mechanism involving GRK1 may be readily harvested. We summarize here the current knowledge on the Type II Oguchi disease with Grk1 missense mutations by focusing on the interaction of GRK1 with other proteins, and how these interactions influence dark adaptation. We call for more detailed analyses of GRK1 missense mutations in animal models, particularly V380D and L157P, to reveal novel disease mechanisms to gain further insight onto GRK1's action and function.
Collapse
Affiliation(s)
- Theodore Edward Margo
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Frank Sungping Chen
- Division of Otolaryngology, PeaceHealth Medical Group, Eugene, Oregan, OR 97401, USA
| | - Yu-Jiun Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ching-Kang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Xia X, Zeng Y, Li Z, Luo H, Wang W, He Y, Lu B, Guo J, Chen K, Xu X. Effect of GRK4 on renal gastrin receptor regulation in hypertension. Clin Exp Hypertens 2023; 45:2245580. [PMID: 37641972 DOI: 10.1080/10641963.2023.2245580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE To investigate whether GRK4 regulates the phosphorylation and function of renal CCKBR. METHODS GRK4 A142V transgenic mice were used as an animal model of enhanced GRK4 activity, and siRNA was used to silence the GRK4 gene to investigate the regulatory effect of GRK4 on CCKBR phosphorylation and function. Finally, the co-localization and co-connection of GRK4 and CCKBR in RPT cells were observed by laser confocal microscopy and immunoprecipitation to explore the mechanism of GRK4 regulating CCKBR. RESULTS Gastrin infusion significantly increased urinary flow and sodium excretion rates in GRK4 WT mice (P < .05). GRK4 siRNA did not affect CCKBR protein expression in WKY RPT cells and SHR RPT cells, but remarkably reduced CCKBR phosphorylation in WKY and SHR RPT cells (P < .05). The inhibitory effect of gastrin on Na+-K+ -ATPase activity in WKY RPT cells was further enhanced by the reduction of GRK4 expression (P < .05), while GRK4 siRNA restored the inhibitory effect of gastrin on Na+-K+ -ATPase activity in SHR RPT cells. Laser confocal and Co-immunoprecipitation results showed that GRK4 and CCKBR co-localized in cultured RPT cells' cytoplasm. CONCLUSION GRK4 participates in the development of hypertension by regulating the phosphorylation of renal CCKBR leading to impaired CCKBR function and water and sodium retention. Knockdown of GRK4 restored the function of CCKBR. The enhanced co-connection between GRK4 and CCKBR may be an important reason for the hyperphosphorylation of GRK4 and CCKBR involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Xuewei Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Yongchun Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
- Department of Cardiology, Raffles Hospital Chongqing, Chongqing, China
| | - Zhuxin Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Yanji He
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Bingjun Lu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Jingwen Guo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|