1
|
Gabiatti BP, Freire ER, Odenwald J, de Freitas Nascimento J, Holetz F, Carrington M, Kramer S, Zoltner M. Trypanosomes lack a canonical EJC but possess an UPF1 dependent NMD-like pathway. PLoS One 2025; 20:e0315659. [PMID: 40053537 PMCID: PMC11888146 DOI: 10.1371/journal.pone.0315659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/28/2024] [Indexed: 03/09/2025] Open
Abstract
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
Collapse
Affiliation(s)
| | | | - Johanna Odenwald
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | | | - Fabiola Holetz
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Mark Carrington
- Department of Biochemistry, Cambridge University, Cambridge, United Kingdom
| | - Susanne Kramer
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| |
Collapse
|
2
|
De Ryck J, Jonckheere V, De Paepe B, De Keyser A, Peeters N, Van Vaerenbergh J, Debode J, Van Damme P, Goormachtig S. Exploring the Tomato Root Protein Network Exploited by Core Type 3 Effectors from the Ralstonia solanacearum Species Complex. J Proteome Res 2025; 24:696-709. [PMID: 39786355 DOI: 10.1021/acs.jproteome.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the Ralstonia solanacearum species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB. The RipU proxeome was enriched for multiple protein kinases, suggesting a potential impact on the two branches of the plant immune surveillance system, being the membrane-localized PAMP-triggered immunity (PTI) and the RIN4-dependent effector-triggered immunity (ETI) complexes. In agreement, a transcriptomics analysis in tomato revealed the potential involvement of RipU in modulating reactive oxygen species (ROS) signaling. The proxeome of RipB was putatively enriched for mitochondrial and chloroplast proteins and that of RipD for proteins potentially involved in the endomembrane system. Together, our results demonstrate that TurboID-PL in tomato hairy roots represents a promising tool to study Ralstonia T3E targets and functioning and that it can unravel potential host processes that can be hijacked by the bacterial pathogen.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Brigitte De Paepe
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Johan Van Vaerenbergh
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
3
|
Gabiatti BP, Krenzer J, Braune S, Krüger T, Zoltner M, Kramer S. Detailed characterisation of the trypanosome nuclear pore architecture reveals conserved asymmetrical functional hubs that drive mRNA export. PLoS Biol 2025; 23:e3003024. [PMID: 39899609 PMCID: PMC11825100 DOI: 10.1371/journal.pbio.3003024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/13/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Nuclear export of mRNAs requires loading the mRNP to the transporter Mex67/Mtr2 in the nucleoplasm, controlled access to the pore by the basket-localised TREX-2 complex and mRNA release at the cytoplasmic site by the DEAD-box RNA helicase Dbp5. Asymmetric localisation of nucleoporins (NUPs) and transport components as well as the ATP dependency of Dbp5 ensure unidirectionality of transport. Trypanosomes possess homologues of the mRNA transporter Mex67/Mtr2, but not of TREX-2 or Dbp5. Instead, nuclear export is likely fuelled by the GTP/GDP gradient created by the Ran GTPase. However, it remains unclear, how directionality is achieved since the current model of the trypanosomatid pore is mostly symmetric. We have revisited the architecture of the trypanosome nuclear pore complex using a novel combination of expansion microscopy, proximity labelling and streptavidin imaging. We could confidently assign the NUP76 complex, a known Mex67 interaction platform, to the cytoplasmic site of the pore and the NUP64/NUP98/NUP75 complex to the nuclear site. Having defined markers for both sites of the pore, we set out to map all 75 trypanosome proteins with known nuclear pore localisation to a subregion of the pore using mass spectrometry data from proximity labelling. This approach defined several further proteins with a specific localisation to the nuclear site of the pore, including proteins with predicted structural homology to TREX-2 components. We mapped the components of the Ran-based mRNA export system to the nuclear site (RanBPL), the cytoplasmic site (RanGAP, RanBP1) or both (Ran, MEX67). Lastly, we demonstrate, by deploying an auxin degron system, that NUP76 holds an essential role in mRNA export consistent with a possible functional orthology to NUP82/88. Altogether, the combination of proximity labelling with expansion microscopy revealed an asymmetric architecture of the trypanosome nuclear pore supporting inherent roles for directed transport. Our approach delivered novel nuclear pore associated components inclusive positional information, which can now be interrogated for functional roles to explore trypanosome-specific adaptions of the nuclear basket, export control, and mRNP remodelling.
Collapse
Affiliation(s)
| | | | - Silke Braune
- Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Prague, Czech Republic
| | | |
Collapse
|
4
|
Gabiatti B, Freire E, Ferreira da Costa J, Ferrarini M, Reichert Assunção de Matos T, Preti H, Munhoz da Rocha I, Guimarães B, Kramer S, Zanchin N, Holetz F. Trypanosoma cruzi eIF4E3- and eIF4E4-containing complexes bind different mRNAs and may sequester inactive mRNAs during nutritional stress. Nucleic Acids Res 2025; 53:gkae1181. [PMID: 39658061 PMCID: PMC11754739 DOI: 10.1093/nar/gkae1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Many eIF4F and poly(A)-binding protein (PABP) paralogues are found in trypanosomes: six eIF4E, five eIF4G, one eIF4A and two PABPs. They are expressed simultaneously and assemble into different complexes, contrasting the situation in metazoans that use distinct complexes in different cell types/developmental stages. Each eIF4F complex has its own proteins, messenger RNAs (mRNAs) and, consequently, a distinct function. We set out to study the function and regulation of the two eIF4F complexes of the parasite Trypanosoma cruzi and identified the associated proteins and mRNAs of eIF4E3 and eIF4E4 in cells in exponential growth and in nutritional stress, an inducer of differentiation to an infective stage. Upon stress, eIF4G and PABP remain associated with the eIF4E, but the associations with other 43S pre-initiation factors decrease, indicating ribosome attachment is impaired. Most eIF4E3-associated mRNAs encode for proteins involved in anabolic metabolism, while eIF4E4 associate with mRNAs encoding ribosomal proteins as in Trypanosoma brucei. Interestingly, for both eIF4E3/4, more mRNAs were associated in stressed cells than in non-stressed cells, even though these have lower translational efficiencies in stress. In summary, trypanosomes have two co-existing eIF4F complexes associating to different mRNAs, but not stress/differentiation-associated mRNAs. Under stress, both complexes exit translation but remain bound to their mRNA targets.
Collapse
Affiliation(s)
- Bernardo Papini Gabiatti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Eden Ribeiro Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Jimena Ferreira da Costa
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | | | - Henrique Preti
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Isadora Munhoz da Rocha
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland 97074, Würzburg, Germany
| | - Nilson Ivo Tonin Zanchin
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Fabíola Barbieri Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| |
Collapse
|
5
|
Cirri E, Knaudt H, Di Fraia D, Pömpner N, Rahnis N, Heinze I, Ori A, Dau T. Optimized Automated Workflow for BioID Improves Reproducibility and Identification of Protein-Protein Interactions. J Proteome Res 2024; 23:4359-4368. [PMID: 39231529 PMCID: PMC11460324 DOI: 10.1021/acs.jproteome.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
Proximity-dependent biotinylation is an important method to study protein-protein interactions in cells, for which an expanding number of applications has been proposed. The laborious and time-consuming sample processing has limited project sizes so far. Here, we introduce an automated workflow on a liquid handler to process up to 96 samples at a time. The automation not only allows higher sample numbers to be processed in parallel but also improves reproducibility and lowers the minimal sample input. Furthermore, we combined automated sample processing with shorter liquid chromatography gradients and data-independent acquisition to increase the analysis throughput and enable reproducible protein quantitation across a large number of samples. We successfully applied this workflow to optimize the detection of proteasome substrates by proximity-dependent labeling.
Collapse
Affiliation(s)
- Emilio Cirri
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| | - Hannah Knaudt
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| | - Domenico Di Fraia
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| | - Nadine Pömpner
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| | - Ivonne Heinze
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging—Fritz
Lipmann Institute (FLI), 07745 Jena, Germany
| |
Collapse
|
6
|
Odenwald J, Gabiatti B, Braune S, Shen S, Zoltner M, Kramer S. Detection of TurboID fusion proteins by fluorescent streptavidin outcompetes antibody signals and visualises targets not accessible to antibodies. eLife 2024; 13:RP95028. [PMID: 39206942 PMCID: PMC11361705 DOI: 10.7554/elife.95028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an 'all in one' solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.
Collapse
Affiliation(s)
| | | | - Silke Braune
- Biocenter, University of WürzburgWürzburgGermany
| | - Siqi Shen
- Department of Parasitology, Faculty of Science, Charles University in PraguePragueCzech Republic
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in PraguePragueCzech Republic
| | | |
Collapse
|
7
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. PLoS Genet 2024; 20:e1011219. [PMID: 39173071 PMCID: PMC11373843 DOI: 10.1371/journal.pgen.1011219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/04/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Adison G. Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Philip T. Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
8
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Schiefer S, Hale BG. Proximal protein landscapes of the type I interferon signaling cascade reveal negative regulation by PJA2. Nat Commun 2024; 15:4484. [PMID: 38802340 PMCID: PMC11130243 DOI: 10.1038/s41467-024-48800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.
Collapse
Affiliation(s)
- Samira Schiefer
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zurich, 8057, Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Parkes R, Garcia TX. Bringing proteomics to bear on male fertility: key lessons. Expert Rev Proteomics 2024; 21:181-203. [PMID: 38536015 PMCID: PMC11426281 DOI: 10.1080/14789450.2024.2327553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.
Collapse
Affiliation(s)
- Rachel Parkes
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
- Scott Department of Urology, Baylor College of Medicine
| |
Collapse
|
11
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584557. [PMID: 38559252 PMCID: PMC10980042 DOI: 10.1101/2024.03.12.584557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Adison G Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| |
Collapse
|
12
|
Kramer S, Karolak NK, Odenwald J, Gabiatti B, Castañeda Londoño P, Zavřelová A, Freire E, Almeida K, Braune S, Moreira C, Eder A, Goos C, Field M, Carrington M, Holetz F, Górna M, Zoltner M. A unique mRNA decapping complex in trypanosomes. Nucleic Acids Res 2023; 51:7520-7540. [PMID: 37309887 PMCID: PMC10415143 DOI: 10.1093/nar/gkad497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Removal of the mRNA 5' cap primes transcripts for degradation and is central for regulating gene expression in eukaryotes. The canonical decapping enzyme Dcp2 is stringently controlled by assembly into a dynamic multi-protein complex together with the 5'-3'exoribonuclease Xrn1. Kinetoplastida lack Dcp2 orthologues but instead rely on the ApaH-like phosphatase ALPH1 for decapping. ALPH1 is composed of a catalytic domain flanked by C- and N-terminal extensions. We show that T. brucei ALPH1 is dimeric in vitro and functions within a complex composed of the trypanosome Xrn1 ortholog XRNA and four proteins unique to Kinetoplastida, including two RNA-binding proteins and a CMGC-family protein kinase. All ALPH1-associated proteins share a unique and dynamic localization to a structure at the posterior pole of the cell, anterior to the microtubule plus ends. XRNA affinity capture in T. cruzi recapitulates this interaction network. The ALPH1 N-terminus is not required for viability in culture, but essential for posterior pole localization. The C-terminus, in contrast, is required for localization to all RNA granule types, as well as for dimerization and interactions with XRNA and the CMGC kinase, suggesting possible regulatory mechanisms. Most significantly, the trypanosome decapping complex has a unique composition, differentiating the process from opisthokonts.
Collapse
Affiliation(s)
| | - Natalia Katarzyna Karolak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Bernardo Gabiatti
- Biocenter, University of Würzburg, Würzburg, Germany
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | | | - Anna Zavřelová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | | | | | - Silke Braune
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Claudia Moreira
- Biocenter, University of Würzburg, Würzburg, Germany
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Amelie Eder
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Carina Goos
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Mark Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Fabiola Holetz
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| |
Collapse
|
13
|
Pozzi B, Naguleswaran A, Florini F, Rezaei Z, Roditi I. The RNA export factor TbMex67 connects transcription and RNA export in Trypanosoma brucei and sets boundaries for RNA polymerase I. Nucleic Acids Res 2023; 51:5177-5192. [PMID: 37070196 PMCID: PMC10250216 DOI: 10.1093/nar/gkad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
TbMex67 is the major mRNA export factor known to date in trypanosomes, forming part of the docking platform within the nuclear pore. To explore its role in co-transcriptional mRNA export, recently reported in Trypanosoma brucei, pulse labelling of nascent RNAs with 5-ethynyl uridine (5-EU) was performed with cells depleted of TbMex67 and complemented with a dominant-negative mutant (TbMex67-DN). RNA polymerase (Pol) II transcription was unaffected, but the procyclin loci, which encode mRNAs transcribed by Pol I from internal sites on chromosomes 6 and 10, showed increased levels of 5-EU incorporation. This was due to Pol I readthrough transcription, which proceeded beyond the procyclin and procyclin-associated genes up to the Pol II transcription start site on the opposite strand. Complementation by TbMex67-DN also increased Pol I-dependent formation of R-loops and γ-histone 2A foci. The DN mutant exhibited reduced nuclear localisation and binding to chromatin compared to wild-type TbMex67. Together with its interaction with chromatin remodelling factor TbRRM1 and Pol II, and transcription-dependent association of Pol II with nucleoporins, our findings support a role for TbMex67 in connecting transcription and export in T. brucei. In addition, TbMex67 stalls readthrough by Pol I in specific contexts, thereby limiting R-loop formation and replication stress.
Collapse
Affiliation(s)
- Berta Pozzi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|