1
|
Neto VG, Cepeda LPP, Queiroz BRS, Cantaloube S, Leger-Silvestre I, Mangeat T, Albert B, Gadal O, Oliveira CC. New insights into nuclear import and nucleolar localization of yeast RNA exosome subunits. Mol Biol Cell 2025; 36:ar69. [PMID: 40266794 DOI: 10.1091/mbc.e25-02-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The RNA exosome is a multiprotein complex essential for RNA maturation and degradation. In budding yeast, a nine-subunit protein core (Exo9) associated with Rrp44 forms a 10-subunit complex (Exo10) in the cytoplasm and, in complex with Rrp6, Exo11 in the nucleus. Depending on its subcellular localization, the exosome interacts with different cofactors and RNA substrates. In the cytoplasm, Exo10 associates with the SKI complex via Ski7, while in the nucleus, Exo11 interacts with the TRAMP complex. Within the nucleolus, the exosome participates in rRNA processing, facilitated by Mtr4-dependent adaptors Utp18 and Nop53. In this article, we have performed a comprehensive study that addresses the targeting mechanism and precise subcellular localization of all members of the Exo11 complex. We observed a high concentration of all Exo11 subunits in the nucleolus and identified the importins Srp1 (α) and Kap95 (β) as responsible for the nuclear import of Exo9 subunits. Notably, Exo9 subunits localization was not significantly disrupted in the simultaneous absence of NLS-containing subunits Rrp6 and Rrp44, suggesting redundant nuclear import pathways for Exo9. Additionally, we show evidence that Ski7 may play a role in the Exo9 retention in the cytoplasm. To explore the exosome subnucleolar localization, we compared Rrp43 with nuclear exosome cofactors and show that it is enriched in the same nucleolar region as Mtr4 and Nop53. In conclusion, our findings provide a detailed characterization of Exo11 distribution, highlight the primary nuclear import mechanisms for Exo9, and reveal the specific localization of the exosome within the granular component of the yeast nucleolus, suggesting a spatial regulation of the RNA-processing pathway.
Collapse
Affiliation(s)
- Valdir Gomes Neto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Leidy Paola P Cepeda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| | - Bruno R S Queiroz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| | - Sylvain Cantaloube
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | | | - Thomas Mangeat
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Benjamin Albert
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Olivier Gadal
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Grünebast J, Lorenzen S, Clos J. Genome-wide quantification of polycistronic transcription in Leishmania major. mBio 2025; 16:e0224124. [PMID: 39584812 PMCID: PMC11708010 DOI: 10.1128/mbio.02241-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Leishmania major is a human-pathogenic, obligate parasite and the etiological agent of the most prevalent, cutaneous form of leishmaniasis, which is an important neglected, tropical disease with ~1.2 million new infections per year. Leishmania, and the whole order Trypanosomatida, are early eukaryotes with highly diverged gene expression and regulation pathways, setting them apart from their mammalian hosts and from most other eukaryotes. Using precision run-on sequence analysis, we performed a genome-wide mapping and density analysis of RNA polymerases in isolated nuclei of the protozoan parasite Leishmania major. We map transcription initiation sites at divergent strand switch regions and head-tail regions within the chromosomes and correlate them with known sites of chromatin modifications. We confirm continuous, polycistronic RNA synthesis in all RNA polymerase II-dependent gene arrays but find small varying RNA polymerase activities in polycistronic transcription units (PTUs), excluding gene-specific transcription regulation, but not PTU-specific variations. Lastly, we find evidence for transcriptional pausing of all three RNA polymerase classes, hinting at a possible mechanism of transcriptional regulation.IMPORTANCELeishmania spp. are pathogens of humans and animals and cause one of the most important neglected tropical diseases. Regulation of gene expression in Leishmania but also in the related Trypanosoma is radically different from all eukaryotic model organisms, dispensing with regulated, gene-specific transcription, and relying instead on highly regulated translation. Our work sheds light on the initiation, elongation, and termination of transcription, maps unidirectional, polycistronic transcription units, provides evidence for transcriptional pausing at or near starting points of RNA synthesis, and quantifies the varying transcription rates of the polycistronic transcription units. Our results will further the understanding of these important pathogens and should provide a valuable resource for researchers in the field of eukaryotic microbiology.
Collapse
Affiliation(s)
- Janne Grünebast
- Leishmania Genetics Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Infection Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Leishmania Genetics Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
3
|
Mendes Felgueira CA, Schneider DA. Growth-phase-dependent control of rRNA synthesis in Saccharomyces cerevisiae. mSphere 2024; 9:e0049324. [PMID: 39360849 PMCID: PMC11520348 DOI: 10.1128/msphere.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/07/2024] [Indexed: 10/30/2024] Open
Abstract
Saccharomyces cerevisiae is one of the most well-studied model organisms used in the scientific community. Its ease of manipulation, accessible growth conditions, short life cycle, and conserved eukaryotic metabolic pathways make it a useful model organism. Consequently, yeast has been used to investigate a myriad of phenomena, from microbial to human studies. Most of the research performed using this model organism utilizes yeast cell populations when they are growing exponentially, a growth phase aptly termed exponential or log phase. However, log phase encompasses several yeast generations and ranges several hours of yeast growth, meaning that there is a potential for variability during this "homogenous" growth phase. Cells in log phase require robust ribosome biogenesis to support their rapid growth and cell division. Interestingly, during log phase, ribosomal RNA (rRNA) synthesis (which is the first and rate limiting step in ribosome biosynthesis) has been shown to decrease prior to growth rate decline in stationary phase. In this study, we utilized several genomic and biochemical methods to elucidate the relationship between subphases of log phase and rRNA synthesis. Our results indicate that as yeast cells progress through subphases of log growth, both polymerase I transcription and rRNA processing are repressed. Overall, this study establishes a growth-phase-dependent control of rRNA synthesis that unexpectedly begins prior to the switch to stationary phase (i.e., pre-diauxic shift) as a putative mechanism of anticipating nutrient starvation.IMPORTANCESaccharomyces cerevisiae is a ubiquitously used model organism in a wide range of scientific research fields. The conventional practice when performing yeast studies is to investigate its properties during logarithmic growth phase. This growth phase is defined as the period during which the cell population doubles at regular intervals, and nutrients are not limiting. However, this growth phase lasts hours and encompasses several yeast cell generations which consequently introduce heterogeneity to log growth phase depending on their time of harvest. This study reveals significant changes in the transcriptomic landscape even in early stages of exponential growth. The overall significance of this work is the revelation that even the seemingly homogenous log growth phase is far more diverse than was previously believed.
Collapse
Affiliation(s)
- Catarina A. Mendes Felgueira
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Huffines AK, Schneider DA. Hmo1 Promotes Efficient Transcription Elongation by RNA Polymerase I in Saccharomyces cerevisiae. Genes (Basel) 2024; 15:247. [PMID: 38397236 PMCID: PMC10888141 DOI: 10.3390/genes15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
RNA polymerase I (Pol I) is responsible for synthesizing the three largest eukaryotic ribosomal RNAs (rRNAs), which form the backbone of the ribosome. Transcription by Pol I is required for cell growth and, therefore, is subject to complex and intricate regulatory mechanisms. To accomplish this robust regulation, the cell engages a series of trans-acting transcription factors. One such factor, high mobility group protein 1 (Hmo1), has long been established as a trans-acting factor for Pol I in Saccharomyces cerevisiae; however, the mechanism by which Hmo1 promotes rRNA synthesis has not been defined. Here, we investigated the effect of the deletion of HMO1 on transcription elongation by Pol I in vivo. We determined that Hmo1 is an important activator of transcription elongation, and without this protein, Pol I accumulates across rDNA in a sequence-specific manner. Our results demonstrate that Hmo1 promotes efficient transcription elongation by rendering Pol I less sensitive to pausing in the G-rich regions of rDNA.
Collapse
Affiliation(s)
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
5
|
Duval M, Yague-Sanz C, Turowski TW, Petfalski E, Tollervey D, Bachand F. The conserved RNA-binding protein Seb1 promotes cotranscriptional ribosomal RNA processing by controlling RNA polymerase I progression. Nat Commun 2023; 14:3013. [PMID: 37230993 DOI: 10.1038/s41467-023-38826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Transcription by RNA polymerase I (RNAPI) represents most of the transcriptional activity in eukaryotic cells and is associated with the production of mature ribosomal RNA (rRNA). As several rRNA maturation steps are coupled to RNAPI transcription, the rate of RNAPI elongation directly influences processing of nascent pre-rRNA, and changes in RNAPI transcription rate can result in alternative rRNA processing pathways in response to growth conditions and stress. However, factors and mechanisms that control RNAPI progression by influencing transcription elongation rate remain poorly understood. We show here that the conserved fission yeast RNA-binding protein Seb1 associates with the RNAPI transcription machinery and promotes RNAPI pausing states along the rDNA. The overall faster progression of RNAPI at the rDNA in Seb1-deficient cells impaired cotranscriptional pre-rRNA processing and the production of mature rRNAs. Given that Seb1 also influences pre-mRNA processing by modulating RNAPII progression, our findings unveil Seb1 as a pause-promoting factor for RNA polymerases I and II to control cotranscriptional RNA processing.
Collapse
Affiliation(s)
- Maxime Duval
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carlo Yague-Sanz
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- URPHYM-GEMO, The University of Namur, 5000, Namur, Belgium
| | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - François Bachand
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|