1
|
Li J, Shao G, Peng B, Xu X, Dong MQ, Li J. The Role of Polo-Like Kinase 1 (PLK1) O-GlcNAcylation in Mitosis. Methods Mol Biol 2025; 2874:127-137. [PMID: 39614052 DOI: 10.1007/978-1-0716-4236-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Polo-like kinase 1 (PLK1) is a crucial mitotic kinase that is implicated in various aspects of cell cycle. Many post-translational modifications have been identified on PLK1 to regulate its activation, stability, and localization. PLK1 has been shown previously to colocalize with the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT), and OGT regulates PLK1 stability. In our recent work, we show that PLK1 is O-GlcNAcylated by click chemistry. Using stepped collisional energy/higher energy collision dissociation mass spectrometry, we mapped the PLK1 O-GlcNAc site to be T291. We further utilized fluorescent activated cell sorting and time-lapse microscopy to assess the mitotic defects of PLK1 O-GlcNAc mutants. In vivo studies in mouse xenograft demonstrated that it promoted uterine cancer tumorigenesis. In this chapter, we delineate the methodologies we used in studying PLK1 O-GlcNAcylation, including click chemistry, stepped collisional energy/higher energy collision dissociation mass spectrometry, fluorescent activated cell sorting, time-lapse microscopy, and mouse xenograft assays.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
2
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Zhou X, Wang Y, Li X, Zhou J, Yang W, Wang X, Jiao S, Zuo W, You Z, Ying W, Wu C, Bao J. O-GlcNAcylation regulates the stability of transferrin receptor (TFRC) to control the ferroptosis in hepatocellular carcinoma cells. Redox Biol 2024; 73:103182. [PMID: 38744192 PMCID: PMC11103954 DOI: 10.1016/j.redox.2024.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death (PCD) enforced by lipid peroxidation accumulation. Transferrin receptor (TFRC), one of the signature proteins of ferroptosis, is abundantly expressed in hepatocellular carcinoma (HCC). However, post-translational modification (PTM) of TFRC and the underlying mechanisms for ferroptosis regulation remain less understood. In this study, we found that TFRC undergoes O-GlcNAcylation, influencing Erastin-induced ferroptosis sensitivity in hepatocytes. Further mechanistic studies found that Erastin can trigger de-O-GlcNAcylation of TFRC at serine 687 (Ser687), which diminishes the binding of ubiquitin E3 ligase membrane-associated RING-CH8 (MARCH8) and decreases polyubiquitination on lysine 665 (Lys665), thereby enhancing TFRC stability that favors labile iron accumulation. Therefore, our findings report O-GlcNAcylation on an important regulatory protein of ferroptosis and reveal an intriguing mechanism by which HCC ferroptosis is controlled by an iron metabolism pathway.
Collapse
Affiliation(s)
- Xunyu Zhou
- School of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Yida Wang
- School of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jing Zhou
- West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanyi Yang
- School of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- School of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Sitong Jiao
- School of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Weibo Zuo
- School of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Ziming You
- School of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Chuanfang Wu
- School of Life Sciences, Sichuan University, Chengdu, 610041, China.
| | - Jinku Bao
- School of Life Sciences, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Meng L, Dong R, Mi W, Qin K, Ouyang K, Sun J, Li J. The ubiquitin E3 ligase APC/C Cdc20 mediates mitotic degradation of OGT. J Biol Chem 2024; 300:107448. [PMID: 38844135 PMCID: PMC11261447 DOI: 10.1016/j.jbc.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme that catalyzes all O-GlcNAcylation reactions intracellularly. Previous investigations have found that OGT levels oscillate during the cell division process. Specifically, OGT abundance is downregulated during mitosis, but the underlying mechanism is lacking. Here we demonstrate that OGT is ubiquitinated by the ubiquitin E3 ligase, anaphase promoting complex/cyclosome (APC/C)-cell division cycle 20 (Cdc20). We show that APC/CCdc20 interacts with OGT through a conserved destruction box (D-box): Arg-351/Leu-354, the abrogation of which stabilizes OGT. As APC/CCdc20-substrate binding is often preceded by a priming ubiquitination event, we also used mass spectrometry and mapped OGT Lys-352 to be a ubiquitination site, which is a prerequisite for OGT association with APC/C subunits. Interestingly, in The Cancer Genome Atlas, R351C is a uterine carcinoma mutant, suggesting that mutations of the D-box are linked with tumorigenesis. Paradoxically, we found that both R351C and the D-box mutants (R351A/L354A) inhibit uterine carcinoma in mouse xenograft models, probably due to impaired cell division and proliferation. In sum, we propose a model where OGT Lys-352 ubiquitination primes its binding with APC/C, and then APC/CCdc20 partners with OGT through the D-box for its mitotic destruction. Our work not only highlights the key mechanism that regulates OGT during the cell cycle, but also reveals the mutual coordination between glycosylation and the cell division machinery.
Collapse
Affiliation(s)
- Li Meng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Rui Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weixiao Mi
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Jianwei Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
6
|
Zhu Z, Li S, Yin X, Sun K, Song J, Ren W, Gao L, Zhi K. Review: Protein O-GlcNAcylation regulates DNA damage response: A novel target for cancer therapy. Int J Biol Macromol 2024; 264:130351. [PMID: 38403231 DOI: 10.1016/j.ijbiomac.2024.130351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The DNA damage response (DDR) safeguards the stable genetic information inheritance by orchestrating a complex protein network in response to DNA damage. However, this mechanism can often hamper the effectiveness of radiotherapy and DNA-damaging chemotherapy in destroying tumor cells, causing cancer resistance. Inhibiting DDR can significantly improve tumor cell sensitivity to radiotherapy and DNA-damaging chemotherapy. Thus, DDR can be a potential target for cancer treatment. Post-translational modifications (PTMs) of DDR-associated proteins profoundly affect their activity and function by covalently attaching new functional groups. O-GlcNAcylation (O-linked-N-acetylglucosaminylation) is an emerging PTM associated with adding and removing O-linked N-acetylglucosamine to serine and threonine residues of proteins. It acts as a dual sensor for nutrients and stress in the cell and is sensitive to DNA damage. However, the explanation behind the specific role of O-GlcNAcylation in the DDR remains remains to be elucidated. To illustrate the complex relationship between O-GlcNAcylation and DDR, this review systematically describes the role of O-GlcNAcylation in DNA repair, cell cycle, and chromatin. We also discuss the defects of current strategies for targeting O-GlcNAcylation-regulated DDR in cancer therapy and suggest potential directions to address them.
Collapse
Affiliation(s)
- Zhuang Zhu
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Xiaopeng Yin
- Department of Oral and Maxillofacial Surgery, Central Laboratory of Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan 250001, Shandong Province, China
| | - Kai Sun
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Jianzhong Song
- Department of Oral and Maxilloafacial Surgery, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
7
|
Zhao J, Hua J, Zhan Y, Chen C, Liu Y, Yang L, Wang H, Wang H, Li J. O-GlcNAcylation stimulates the deubiquitination activity of USP16 and regulates cell cycle progression. J Biol Chem 2024; 300:107150. [PMID: 38462164 PMCID: PMC10998217 DOI: 10.1016/j.jbc.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Histone 2A monoubiquitination (uH2A) underscores a key epigenetic regulation of gene expression. In this report, we show that the deubiquitinase for uH2A, ubiquitin-specific peptidase 16 (USP16), is modified by O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation involves the installation of the O-GlcNAc moiety to Ser/Thr residues. It crosstalks with Ser/Thr phosphorylation, affects protein-protein interaction, alters enzyme activity or protein folding, and changes protein subcellular localization. In our study, we first confirmed that USP16 is glycosylated on Thr203 and Ser214, as reported in a previous chemoenzymatic screen. We then discovered that mutation of the O-GlcNAcylation site Thr203, which is adjacent to deubiquitination-required Cys204, reduces the deubiquitination activity toward H2AK119ub in vitro and in cells, while mutation on Ser214 had the opposite effects. Using USP16 Ser552 phosphorylation-specific antibodies, we demonstrated that O-GlcNAcylation antagonizes cyclin-dependent kinase 1-mediated phosphorylation and promotes USP16 nuclear export. O-GlcNAcylation of USP16 is also required for deubiquitination of Polo-like kinase 1, a mitotic master kinase, and the subsequent chromosome segregation and cytokinesis. In summary, our study revealed that O-GlcNAcylation of USP16 at Thr203 and Ser214 coordinates deubiquitination of uH2A and Polo-like kinase 1, thus ensuring proper cell cycle progression.
Collapse
Affiliation(s)
- Jianxin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Jie Hua
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA; School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Zhan
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Chunxu Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Bioengineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yue Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China.
| |
Collapse
|
8
|
Saunders H, Dias WB, Slawson C. Growing and dividing: how O-GlcNAcylation leads the way. J Biol Chem 2023; 299:105330. [PMID: 37820866 PMCID: PMC10641531 DOI: 10.1016/j.jbc.2023.105330] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Cell cycle errors can lead to mutations, chromosomal instability, or death; thus, the precise control of cell cycle progression is essential for viability. The nutrient-sensing posttranslational modification, O-GlcNAc, regulates the cell cycle allowing one central control point directing progression of the cell cycle. O-GlcNAc is a single N-acetylglucosamine sugar modification to intracellular proteins that is dynamically added and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. These enzymes act as a rheostat to fine-tune protein function in response to a plethora of stimuli from nutrients to hormones. O-GlcNAc modulates mitogenic growth signaling, senses nutrient flux through the hexosamine biosynthetic pathway, and coordinates with other nutrient-sensing enzymes to progress cells through Gap phase 1 (G1). At the G1/S transition, O-GlcNAc modulates checkpoint control, while in S Phase, O-GlcNAcylation coordinates the replication fork. DNA replication errors activate O-GlcNAcylation to control the function of the tumor-suppressor p53 at Gap Phase 2 (G2). Finally, in mitosis (M phase), O-GlcNAc controls M phase progression and the organization of the mitotic spindle and midbody. Critical for M phase control is the interplay between OGT and OGA with mitotic kinases. Importantly, disruptions in OGT and OGA activity induce M phase defects and aneuploidy. These data point to an essential role for the O-GlcNAc rheostat in regulating cell division. In this review, we highlight O-GlcNAc nutrient sensing regulating G1, O-GlcNAc control of DNA replication and repair, and finally, O-GlcNAc organization of mitotic progression and spindle dynamics.
Collapse
Affiliation(s)
- Harmony Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner B Dias
- Federal University of Rio De Janeiro, Rio De Janeiro, Brazil; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
9
|
Li J, Liu X, Peng B, Feng T, Zhou W, Meng L, Zhao S, Zheng X, Wu C, Wu S, Chen X, Xu X, Sun J, Li J. O-GlcNAc has crosstalk with ADP-ribosylation via PARG. J Biol Chem 2023; 299:105354. [PMID: 37858678 PMCID: PMC10654028 DOI: 10.1016/j.jbc.2023.105354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation, a prevalent protein post-translational modification (PTM) that occurs intracellularly, has been shown to crosstalk with phosphorylation and ubiquitination. However, it is unclear whether it interplays with other PTMs. Here we studied its relationship with ADP-ribosylation, which involves decorating target proteins with the ADP-ribose moiety. We discovered that the poly(ADP-ribosyl)ation "eraser", ADP-ribose glycohydrolase (PARG), is O-GlcNAcylated at Ser26, which is in close proximity to its nuclear localization signal. O-GlcNAcylation of PARG promotes nuclear localization and chromatin association. Upon DNA damage, O-GlcNAcylation augments the recruitment of PARG to DNA damage sites and interacting with proliferating cell nuclear antigen (PCNA). In hepatocellular carcinoma (HCC) cells, PARG O-GlcNAcylation enhances the poly(ADP-ribosyl)ation of DNA damage-binding protein 1 (DDB1) and attenuates its auto-ubiquitination, thereby stabilizing DDB1 and allowing it to degrade its downstream targets, such as c-Myc. We further demonstrated that PARG-S26A, the O-GlcNAc-deficient mutant, promoted HCC in mouse xenograft models. Our findings thus reveal that PARG O-GlcNAcylation inhibits HCC, and we propose that O-GlcNAc glycosylation may crosstalk with many other PTMs.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiangxiang Liu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Tingting Feng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Li Meng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Shanshan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiyuan Zheng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Chen Wu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| | - Jianwei Sun
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
10
|
Le Minh G, Esquea EM, Young RG, Huang J, Reginato MJ. On a sugar high: Role of O-GlcNAcylation in cancer. J Biol Chem 2023; 299:105344. [PMID: 37838167 PMCID: PMC10641670 DOI: 10.1016/j.jbc.2023.105344] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Recent advances in the understanding of the molecular mechanisms underlying cancer progression have led to the development of novel therapeutic targeting strategies. Aberrant glycosylation patterns and their implication in cancer have gained increasing attention as potential targets due to the critical role of glycosylation in regulating tumor-specific pathways that contribute to cancer cell survival, proliferation, and progression. A special type of glycosylation that has been gaining momentum in cancer research is the modification of nuclear, cytoplasmic, and mitochondrial proteins, termed O-GlcNAcylation. This protein modification is catalyzed by an enzyme called O-GlcNAc transferase (OGT), which uses the final product of the Hexosamine Biosynthetic Pathway (HBP) to connect altered nutrient availability to changes in cellular signaling that contribute to multiple aspects of tumor progression. Both O-GlcNAc and its enzyme OGT are highly elevated in cancer and fulfill the crucial role in regulating many hallmarks of cancer. In this review, we present and discuss the latest findings elucidating the involvement of OGT and O-GlcNAc in cancer.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily M Esquea
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Riley G Young
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessie Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|