1
|
Rips J, Halstuk O, Fuchs A, Lang Z, Sido T, Gershon-Naamat S, Abu-Libdeh B, Edvardson S, Salah S, Breuer O, Hadhud M, Eden S, Simon I, Slae M, Damseh NS, Abu-Libdeh A, Eskin-Schwartz M, Birk OS, Varga J, Schueler-Furman O, Rosenbluh C, Elpeleg O, Yanovsky-Dagan S, Mor-Shaked H, Harel T. Unbiased phenotype and genotype matching maximizes gene discovery and diagnostic yield. Genet Med 2024; 26:101068. [PMID: 38193396 DOI: 10.1016/j.gim.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
PURPOSE Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.
Collapse
Affiliation(s)
- Jonathan Rips
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Adina Fuchs
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ziv Lang
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sido
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | - Bassam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Simon Edvardson
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Neurology Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Oded Breuer
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Mohamad Hadhud
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Pediatric Pulmonology and CF Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Sharon Eden
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Itamar Simon
- Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Mordechai Slae
- Pediatric Gastroenterology Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Nadirah S Damseh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine
| | - Abdulsalam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, E. Jerusalem, Palestine; Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Julia Varga
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
3
|
Wang X, Su M, Wang L, Zhou Y, Li N, Yang B. NEDD4 Like E3 Ubiquitin Protein Ligase Represses Astrocyte Activation and Aggravates Neuroinflammation in Mice with Depression via Paired Box 6 Ubiquitination. Neuroscience 2023; 530:144-157. [PMID: 37661017 DOI: 10.1016/j.neuroscience.2023.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Astrocytes are implicated in stress-induced neuroinflammatory responses in depression. This paper was to explore the molecular mechanism of the E3 ubiquitin ligase NEDD4L (NEDD4 like E3 ubiquitin protein ligase) in depressed mice by regulating astrocyte activation, and to find a new target for depression. A mouse model of depression was established by CUMS (chronic mild unpredictable stress) in 48 6-week male C57BL/6 mice and injected with sh-NEDD4L vector for testing behavioral and cognitive abilities, histopathological changes, and the number of GFAP-positive cells. The mRNA and protein levels of NEDD4L, PAX6 (paired box 6) and P2X7R (purinergic ligand-gated ion channel 7 receptor) were measured. Inflammation model was established by lipopolysaccharide treatment of mouse astrocyte line C8-D1A and infected with sh-NEDD4L. After CUMS induction, mice showed depression-like symptoms, increased inflammatory infiltration, decreased glial fibrillary acidic protein (GFAP)-positive cells in brain tissue, and increased NEDD4L protein levels. NEDD4L inhibition increased GFAP-positive cells, increased PAX6 protein levels and decreased P2X7R mRNA and protein levels, and decreased inflammatory factor secretion in brain tissue and in vitro cells. PAX6 knockdown or P2X7R overexpression partially reversed the effects of NEDD4L inhibition on astrocyte activation and neuroinflammation. To conclude, highly-expressed NEDD4L in depression-like mouse brain inhibits astrocyte activation and exacerbates neuroinflammation by ubiquitinating PAX6 and promoting P2X7R level.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an710000, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an710000, China
| | - Lesheng Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yixuan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an710000, China
| | - Bangkun Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Shohayeb B, Cooper HM. The ups and downs of Pax6 in neural stem cells. J Biol Chem 2023; 299:104680. [PMID: 37028762 PMCID: PMC10164895 DOI: 10.1016/j.jbc.2023.104680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Neural stem cells (NSCs) must rapidly adapt their transcriptional activity to the ever-changing embryonic environment. Currently, we have a limited understanding of how key transcription factors such as Pax6 are modulated at the protein level. In a recent issue of the JBC, Dong et al identifed a novel post-translational regulatory mechanism in which Kat2a-mediated lysine acetylation on Pax6 leads to its ubiquitination and ultimately its degradation via the proteasome pathway, thereby determining whether NSCs undergo proliferation or neuronal differentiation.
Collapse
Affiliation(s)
- Belal Shohayeb
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, 4072, Australia.
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|