1
|
Querci L, Fiorucci L, Grifagni D, Costantini P, Ravera E, Ciofi-Baffoni S, Piccioli M. Shedding Light on the Electron Delocalization Pathway at the [Fe 2S 2] 2+ Cluster of FDX2. Inorg Chem 2025; 64:6698-6712. [PMID: 40121555 PMCID: PMC11979892 DOI: 10.1021/acs.inorgchem.5c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/25/2025]
Abstract
In this paper, we investigate the electronic structure of the [Fe2S2]2+ cluster of human ferredoxin 2 by designing NMR experiments tailored to observe hyperfine-shifted and fast relaxing resonances in the immediate proximity of the cluster and adding a quantitative layer of interpretation through quantum chemical calculations. The combination of paramagnetic NMR and density functional theory data provides evidence of the way unpaired electron density map is at the origin of the inequivalence of the two iron(III) ferredoxin centers. An electron spin density transfer is observed between cluster inorganic sulfide ions and aliphatic carbon atoms, occurring via a C-H---S-Fe3+ interaction, suggesting that inorganic cluster sulfide ions have a significant role in the distribution of electron spin density around the prosthetic group. The extended assignment of 1H, 13C, and 15N nuclei allows the identification of all residues of the binding loop and provides an estimate of the magnetic exchange coupling constant between the two Fe3+ ions of the [Fe2S2]2+ cluster of 386 cm-1. The approach developed here can be extended to other iron-sulfur proteins, providing a crucial tool to uncover subtle differences in electronic structures that modulate the functions of this protein family.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Letizia Fiorucci
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Deborah Grifagni
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Paola Costantini
- Department
of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
- Florence
Data Science, University of Florence, Florence 50134, Italy
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic
Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Sesto
Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino 50019, Italy
| |
Collapse
|
2
|
Hashimoto T, Tsubota K, Hatabi K, Hosoi Y. FDX1 Regulates the Phosphorylation of ATM, DNA-PKcs Akt, and EGFR and Affects Radioresistance Under Severe Hypoxia in the Glioblastoma Cell Line T98G. Int J Mol Sci 2025; 26:3378. [PMID: 40244269 PMCID: PMC11990063 DOI: 10.3390/ijms26073378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Hypoxic cells exhibit radioresistance, which is associated with poor prognosis in cancer patients. Understanding the molecular mechanisms underlying radioresistance in hypoxic tumor cells is crucial for improving radiotherapy efficacy. In this study, we examined the role of FDX1 in regulating cellular responses to severe hypoxia in glioblastoma cell lines T98G and A172. We found that FDX1 expression was upregulated under severe hypoxia, and its knockdown reduced the hypoxia-induced activation of key radioresistance factors and cellular survival mechanisms, including ATM, DNA-PKcs, Akt, and EGFR. FDX1 knockdown also sensitized T98G cells to radiation under severe hypoxia. Furthermore, FDX1 was found to regulate HIF-1α protein level, while HIF-1α did not regulate FDX1 expression. These results suggest that FDX1 may be a novel therapeutic target to overcome radioresistance in glioblastoma under severe hypoxia.
Collapse
Affiliation(s)
| | | | | | - Yoshio Hosoi
- Laboratory of Radiation Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (T.H.); (K.H.)
| |
Collapse
|
3
|
Cheng L, Wang Y, Zhang Y. Dying to survive: harnessing inflammatory cell death for better immunotherapy. Trends Cancer 2025; 11:376-402. [PMID: 39986988 DOI: 10.1016/j.trecan.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Immunotherapy has transformed cancer treatment paradigms, but its effectiveness depends largely on the immunogenicity of the tumor. Unfortunately, the high resemblance of cancer to normal tissues makes most tumors immunologically 'cold', with a poor response to immunotherapy. Danger signals are critical for breaking immune tolerance and mobilizing robust, long-lasting antitumor immunity. Recent studies have identified inflammatory cell death modalities and their power in providing danger signals to trigger optimal tumor suppression. However, key mediators of inflammatory cell death are preferentially silenced during early tumor immunoediting. Strategies to rejuvenate inflammatory cell death hold great promise for broadening immunotherapy-responsive tumors. In this review, we examine how inflammatory cell death enhances tumor immunogenicity, how it is suppressed during immunoediting, and the potential of harnessing it for improved immunotherapy.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibo Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
5
|
Rogers RS, Mootha VK. Hypoxia as a medicine. Sci Transl Med 2025; 17:eadr4049. [PMID: 39841808 DOI: 10.1126/scitranslmed.adr4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Oxygen is essential for human life, yet a growing body of preclinical research is demonstrating that chronic continuous hypoxia can be beneficial in models of mitochondrial disease, autoimmunity, ischemia, and aging. This research is revealing exciting new and unexpected facets of oxygen biology, but translating these findings to patients poses major challenges, because hypoxia can be dangerous. Overcoming these barriers will require integrating insights from basic science, high-altitude physiology, clinical medicine, and sports technology. Here, we explore the foundations of this nascent field and outline a path to determine how chronic continuous hypoxia can be safely, effectively, and practically delivered to patients.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02114, USA
| |
Collapse
|
6
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Qin L, Lv Z, Luo B, Yu J, Li M, Jing R, Li J. Hypoxia-induced autophagy attenuates ferredoxin 1-mediated cuproptosis in colorectal cancer cells. Hum Exp Toxicol 2025; 44:9603271251335393. [PMID: 40294285 DOI: 10.1177/09603271251335393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
IntroductionCuproptosis has emerged as a potential therapeutic target for colorectal cancer (CRC). This study investigated the role of ferredoxin 1 (FDX1) in regulating cuproptosis under hypoxic conditions and explored the impact of autophagy on this process in CRC.MethodsCRC patient samples and cell lines were used in this study. Cells were exposed to hypoxia and treated with Es-Cu (a copper supplement) and rapamycin, an autophagy inducer. FDX1 expression in clinical tissues was assessed in clinical tissues using qPCR and Western blot. The CCK8 assay, EdU staining, and Transwell assay were employed to evaluate the malignant behavior of tumor cells. Copper content and DLAT oligomerization were measured. A nude mouse xenograft model was used to explore the role of FDX1 under hypoxic conditions.ResultsCompared with adjacent normal tissues, elevated FDX1 expression was observed in CRC tissues. In vitro, hypoxia or Es-Cu treatment upregulated FDX1 expression in CRC cell lines, resulting in reduced cell proliferation and increased cellular damage. FDX1 overexpression under hypoxic conditions suppressed migration, invasion, and proliferation while promoting cellular damage and DLAT oligomerization. Rapamycin-induced autophagy reversed the inhibitory effects of FDX1 overexpression on CRC cells. In vivo, rapamycin treatment attenuated the tumor-suppressive effects of FDX1 overexpression in nude mouse xenograft models.DiscussionThis study demonstrated that hypoxia-induced autophagy inhibits FDX1-mediated cuproptosis, leading to resistance to copper-induced cell death in CRC cells. Targeting the autophagy pathway may provide a novel therapeutic strategy to overcome resistance to cuproptosis and improving CRC treatment outcomes.
Collapse
Affiliation(s)
- Long Qin
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, Nan Chong Central Hospital, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - ZhenBing Lv
- Department of General Surgery, Nan Chong Central Hospital, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - BinYu Luo
- Department of General Surgery, Nan Chong Central Hospital, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Yu
- Department of General Surgery, Nan Chong Central Hospital, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Li
- Department of General Surgery, Nan Chong Central Hospital, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Rong Jing
- Department of Gastroenterology, Nan Chong Central Hospital, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - JingDong Li
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
9
|
Peng G, Huang Y, Xie G, Tang J. Exploring Copper's role in stroke: progress and treatment approaches. Front Pharmacol 2024; 15:1409317. [PMID: 39391696 PMCID: PMC11464477 DOI: 10.3389/fphar.2024.1409317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Copper is an important mineral, and moderate copper is required to maintain physiological processes in nervous system including cerebral ischemia/reperfusion (I/R) injury. Over the past few decades, copper induced cell death, named cuprotosis, has attracted increasing attention. Several lines of evidence have confirmed cuprotosis exerts pivotal role in diverse of pathological processes, such as cancer, neurodegenerative diseases, and I/R injury. Therefore, an in-depth understanding of the interaction mechanism between copper-mediated cell death and I/R injury may reveal the significant alterations about cellular copper-mediated homeostasis in physiological and pathophysiological conditions, as well as therapeutic strategies deciphering copper-induced cell death in cerebral I/R injury.
Collapse
Affiliation(s)
- Gang Peng
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Guangdi Xie
- Department of Neurology, Huitong People’s Hospital, Huitong, Hunan, China
| | - Jiayu Tang
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
10
|
Miyahara S, Ohuchi M, Nomura M, Hashimoto E, Soga T, Saito R, Hayashi K, Sato T, Saito M, Yamashita Y, Shimada M, Yaegashi N, Yamada H, Tanuma N. FDX2, an iron-sulfur cluster assembly factor, is essential to prevent cellular senescence, apoptosis or ferroptosis of ovarian cancer cells. J Biol Chem 2024; 300:107678. [PMID: 39151727 PMCID: PMC11414659 DOI: 10.1016/j.jbc.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis, or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global downregulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53 deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids. Our results suggest that p53 status and phospholipid homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.
Collapse
Affiliation(s)
- Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Eifumi Hashimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
11
|
Sun B, Ding P, Song Y, Zhou J, Chen X, Peng C, Liu S. FDX1 downregulation activates mitophagy and the PI3K/AKT signaling pathway to promote hepatocellular carcinoma progression by inducing ROS production. Redox Biol 2024; 75:103302. [PMID: 39128228 PMCID: PMC11366913 DOI: 10.1016/j.redox.2024.103302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic reprogramming can lead to the development and progression of hepatocellular carcinoma (HCC). Ferredoxin 1 (FDX1) is a small mitochondrial protein and recent studies have shown that FDX1 plays an important role in tumor cuproptosis, but its role in HCC is still elusive. In this study, we aim to investigate the expression and novel functions of FDX1 in HCC. METHODS FDX1 expression was first analyzed in publicly available datasets and verified by immunohistochemistry, qRT-PCR and Western blot. In vitro and in vivo experiments were applied to explore the functions of FDX1. Non-targeted metabolomics and RNA-sequencing were used to determine molecular mechanism. mRFP-GFP-LC3 lentivirus transfection, Mito-Tracker Red and Lyso-Tracker Green staining, transmission electron microscopy, flow cytometry, JC-1 staining, etc. were used to analyze mitophagy or ROS levels. Hydrodynamic tail vein injection (HTVi) and patient-derived organoid (PDO) models were used to analyze effect of FDX1 overexpression. RESULTS FDX1 expression is significantly downregulated in HCC tissues. FDX1 downregulation promotes HCC cell proliferation, invasion in vitro and growth, metastasis in vivo. In addition, FDX1 affects metabolism of HCC cells and is associated with autophagy. We then confirmed that FDX1 deficiency increases ROS levels, activates mitophagy and the PI3K/AKT signaling pathway in HCC cells. Interestingly, scavenging ROS attenuates the tumor-promoting role and mitophagy of FDX1 downregulation. The results of HTVi and PDO models both find that FDX1 elevation significantly inhibits HCC progression. Moreover, low FDX1 expression is associated with shorter survival and is an independent risk factor for prognosis in HCC patients. CONCLUSIONS Our research had investigated novel functions of FDX1 in HCC. Downregulation of FDX1 contributes to metabolic reprogramming and leads to ROS-mediated activation of mitophagy and the PI3K/AKT signaling pathway. FDX1 is a potential prognostic biomarker and increasing FDX1 expression may be a potential therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China
| | - Peng Ding
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Jia Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China.
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China.
| |
Collapse
|
12
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Xue J, Ye C. The role of lipoylation in mitochondrial adaptation to methionine restriction. Bioessays 2024; 46:e2300218. [PMID: 38616332 DOI: 10.1002/bies.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.
Collapse
Affiliation(s)
- Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
14
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Tang D, Kroemer G, Kang R. Targeting cuproplasia and cuproptosis in cancer. Nat Rev Clin Oncol 2024; 21:370-388. [PMID: 38486054 DOI: 10.1038/s41571-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/26/2024]
Abstract
Copper, an essential trace element that exists in oxidized and reduced forms, has pivotal roles in a variety of biological processes, including redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy and immune modulation; maintaining copper homeostasis is crucial as both its deficiency and its excess are deleterious. Dysregulated copper metabolism has a dual role in tumorigenesis and cancer therapy. Specifically, cuproplasia describes copper-dependent cell growth and proliferation, including hyperplasia, metaplasia and neoplasia, whereas cuproptosis refers to a mitochondrial pathway of cell death triggered by excessive copper exposure and subsequent proteotoxic stress (although complex interactions between cuproptosis and other cell death mechanisms, such as ferroptosis, are likely and remain enigmatic). In this Review, we summarize advances in our understanding of copper metabolism, the molecular machineries underlying cuproplasia and cuproptosis, and their potential targeting for cancer therapy. These new findings advance the rapidly expanding field of translational cancer research focused on metal compounds.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Equipe labellisée-Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Moison C, Gracias D, Schmitt J, Girard S, Spinella JF, Fortier S, Boivin I, Mendoza-Sanchez R, Thavonekham B, MacRae T, Mayotte N, Bonneil E, Wittman M, Carmichael J, Ruel R, Thibault P, Hébert J, Marinier A, Sauvageau G. SF3B1 mutations provide genetic vulnerability to copper ionophores in human acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadl4018. [PMID: 38517966 PMCID: PMC10959413 DOI: 10.1126/sciadv.adl4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/24/2024]
Abstract
In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.
Collapse
Affiliation(s)
- Céline Moison
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Deanne Gracias
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Julie Schmitt
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Girard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean-François Spinella
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Fortier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Isabel Boivin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Bounkham Thavonekham
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Tara MacRae
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Nadine Mayotte
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mark Wittman
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - James Carmichael
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - Réjean Ruel
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Josée Hébert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
17
|
Gonzalez L, Chau-Duy Tam Vo S, Faivre B, Pierrel F, Fontecave M, Hamdane D, Lombard M. Activation of Coq6p, a FAD Monooxygenase Involved in Coenzyme Q Biosynthesis, by Adrenodoxin Reductase/Ferredoxin. Chembiochem 2024; 25:e202300738. [PMID: 38141230 DOI: 10.1002/cbic.202300738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/25/2023]
Abstract
Adrenodoxin reductase (AdxR) plays a pivotal role in electron transfer, shuttling electrons between NADPH and iron/sulfur adrenodoxin proteins in mitochondria. This electron transport system is essential for P450 enzymes involved in various endogenous biomolecules biosynthesis. Here, we present an in-depth examination of the kinetics governing the reduction of human AdxR by NADH or NADPH. Our results highlight the efficiency of human AdxR when utilizing NADPH as a flavin reducing agent. Nevertheless, akin to related flavoenzymes such as cytochrome P450 reductase, we observe that low NADPH concentrations hinder flavin reduction due to intricate equilibrium reactions between the enzyme and its substrate/product. Remarkably, the presence of MgCl2 suppresses this complex kinetic behavior by decreasing NADPH binding to oxidized AdxR, effectively transforming AdxR into a classical Michaelis-Menten enzyme. We propose that the addition of MgCl2 may be adapted for studying the reductive half-reactions of other flavoenzymes with NADPH. Furthermore, in vitro experiments provide evidence that the reduction of the yeast flavin monooxygenase Coq6p relies on an electron transfer chain comprising NADPH-AdxR-Yah1p-Coq6p, where Yah1p shuttles electrons between AdxR and Coq6p. This discovery explains the previous in vivo observation that Yah1p and the AdxR homolog, Arh1p, are required for the biosynthesis of coenzyme Q in yeast.
Collapse
Affiliation(s)
- Lucie Gonzalez
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Samuel Chau-Duy Tam Vo
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Institut de Biologie Paris-Seine, Biology of Aging and Adaptation, UMR 8256, Sorbonne Université, 7 quai Saint-Bernard, 75 252, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| |
Collapse
|
18
|
魏 婷, 丁 洋, 张 佳, 李 金, 张 恒, 康 品, 张 宁. [Correlation of serum ferredoxin 1 and lipoic acid levels with severity of coronary artery disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:308-316. [PMID: 38501416 PMCID: PMC10954524 DOI: 10.12122/j.issn.1673-4254.2024.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To analyze the correlation of copper death inducer ferredoxin 1 (FDX1) and lipoic acid (LA) with the occurrence and severity of coronary atherosclerosis and explore their roles in coronary heart disease (CHD). METHODS We analyzed the data of 226 patients undergoing coronary artery angiography (CAG) in our hospital between October, 2021 and October, 2022, including 47 patients with normal CAG findings (control group) and 179 patients with mild, moderate or severe coronary artery stenosis (CHD group). Serum FDX1 and LA levels were determined with ELISA for all the patients. We also examined pathological changes in the aorta of normal and ApoE-/- mice using HE staining and observed collagen fiber deposition with Sirius red staining. Immunohistochemistry was used to detect the expression and distribution of FDX1 and LA in the aorta, and RT-PCR was performed to detect the expressions of FDX1, LIAS and ACO2 mRNAs in the myocardial tissues. RESULTS Compared with the control patients, CHD patients had significantly lower serum FDX1 and LA levels, which decreased progressively as coronary artery stenosis worsened (P < 0.01) and as the number of involved coronary artery branches increased (P < 0.05). Serum FDX1 and LA levels were positively correlated (r=0.451, P < 0.01) and they both negatively correlated with the Gensini score (r=-0.241 and -0.273, respectively; P < 0.01). Compared with normal mice, ApoE-/- mice showed significantly increased lipid levels (P < 0.01) and atherosclerosis index, obvious thickening, lipid aggregation, and collagen fiber hyperplasia in the aorta, and significantly reduced expressions of FDX1, LA, LIAS, and ACO2 (P < 0.05). CONCLUSION Serum FDX1 and LA levels decrease with worsening of coronary artery lesions, and theirs expressions are correlated with coronary artery lesions induced by hyperlipidemia.
Collapse
Affiliation(s)
- 婷 魏
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 洋洋 丁
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 佳佳 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 金龙 李
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 恒 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 品方 康
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Preclinical and Clinical Cardiovascular Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 宁汝 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
19
|
Wedan RJ, Longenecker JZ, Nowinski SM. Mitochondrial fatty acid synthesis is an emergent central regulator of mammalian oxidative metabolism. Cell Metab 2024; 36:36-47. [PMID: 38128528 PMCID: PMC10843818 DOI: 10.1016/j.cmet.2023.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Contrary to their well-known functions in nutrient breakdown, mitochondria are also important biosynthetic hubs and express an evolutionarily conserved mitochondrial fatty acid synthesis (mtFAS) pathway. mtFAS builds lipoic acid and longer saturated fatty acids, but its exact products, their ultimate destination in cells, and the cellular significance of the pathway are all active research questions. Moreover, why mitochondria need mtFAS despite their well-defined ability to import fatty acids is still unclear. The identification of patients with inborn errors of metabolism in mtFAS genes has sparked fresh research interest in the pathway. New mammalian models have provided insights into how mtFAS coordinates many aspects of oxidative mitochondrial metabolism and raise questions about its role in diseases such as obesity, diabetes, and heart failure. In this review, we discuss the products of mtFAS, their function, and the consequences of mtFAS impairment across models and in metabolic disease.
Collapse
Affiliation(s)
- Riley J Wedan
- Department of Metabolism and Nutritional Programming, The Van Andel Institute, Grand Rapids, MI 49503, USA; College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jacob Z Longenecker
- Department of Metabolism and Nutritional Programming, The Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, The Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
20
|
Zulkifli M, Okonkwo AU, Gohil VM. FDX1 Is Required for the Biogenesis of Mitochondrial Cytochrome c Oxidase in Mammalian Cells. J Mol Biol 2023; 435:168317. [PMID: 37858707 PMCID: PMC11451897 DOI: 10.1016/j.jmb.2023.168317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Ferredoxins (FDXs) are evolutionarily conserved iron-sulfur (Fe-S) proteins that function as electron transfer proteins in diverse metabolic pathways. Mammalian mitochondria contain two ferredoxins, FDX1 and FDX2, which share a high degree of structural similarity but exhibit different functionalities. Previous studies have established the unique role of FDX2 in the biogenesis of Fe-S clusters; however, FDX1 seems to have multiple targets in vivo, some of which are only recently emerging. Using CRISPR-Cas9-based loss-of-function studies in rat cardiomyocyte cell line, we demonstrate an essential requirement of FDX1 in mitochondrial respiration and energy production. We attribute reduced mitochondrial respiration to a specific decrease in the abundance and assembly of cytochrome c oxidase (CcO), a mitochondrial heme-copper oxidase and the terminal enzyme of the mitochondrial respiratory chain. FDX1 knockout cells have reduced levels of copper and heme a/a3, factors that are essential for the maturation of the CcO enzyme complex. Copper supplementation failed to rescue CcO biogenesis, but overexpression of heme a synthase, COX15, partially rescued COX1 abundance in FDX1 knockout cells. This finding links FDX1 function to heme a biosynthesis, and places it upstream of COX15 in CcO biogenesis like its ancestral yeast homolog. Taken together, our work has identified FDX1 as a critical CcO biogenesis factor in mammalian cells.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| | - Adriana U Okonkwo
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|