1
|
Gisriel CJ, Brudvig GW. Investigations into cyanobacterial photoacclimation processes address longstanding proposals for improving crop yields. Nat Commun 2025; 16:3942. [PMID: 40287420 PMCID: PMC12033221 DOI: 10.1038/s41467-025-59419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Recent discoveries reveal how cyanobacteria naturally overcome photosynthetic limits, supporting proposals to improve use of the solar spectrum. These insights could guide efforts to engineer more efficient crops and biofuel-producing organisms.
Collapse
Affiliation(s)
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Huang D, Wei T, Chen M, Chen SJ, Wu JY, Zhang LD, Xu HF, Dai GZ, Zhang ZC, Qiu BS. Far-red light-driven photoautotrophy of chlorophyll f-producing cyanobacterium without red-shifted phycobilisome core complex. PHOTOSYNTHESIS RESEARCH 2025; 163:22. [PMID: 40064749 DOI: 10.1007/s11120-025-01143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/02/2025] [Indexed: 04/24/2025]
Abstract
Chlorophyll (Chl) f production expands oxygenic photosynthesis of some cyanobacteria into the far-red light (FRL) region through reconstructed FRL-allophycocyanin (APC) cores and Chl f-containing photosystems. Presently, a unicellular cyanobacterium was isolated for studying FRL photoacclimation (FaRLiP) and classified as a new species Altericista leshanensis. It uses additional Chl f and FRL-APC cores, with retained white light (WL)-phycobiliproteins to thrive FRL conditions. Marker-less deletion of FaRLiP-apcE2 gene was constructed using CRISPR-Cpf1 system. This genetic manipulation has no significant effects on the expression of genes in the FaRLiP gene cluster, including adjacent apc genes under FRL conditions. The function-loss mutant cells cannot assemble FRL-APC cores, and show the decreased growth rate and Chl f production under FRL conditions. Interestingly, the expression levels of phycocyanin (PC) subunits (cpc) and photosystem II D1 proteins (psbA2) are significantly increased in mutant cells under FRL conditions. These results suggest that FRL acclimation in the mutant cells has a different photosynthetic apparatus due to the lack of FRL-APC cores. The alternative strategy of FaRLiP provides additional evidence of flexible pathways towards the potential application of Chl f and associated biotechnology.
Collapse
Affiliation(s)
- Da Huang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Tong Wei
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Shu-Jun Chen
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jia-Yue Wu
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Lu-Dan Zhang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hai-Feng Xu
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Zhong-Chun Zhang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.
| | - Bao-Sheng Qiu
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
3
|
Gray C, Chitnavis S, Buja T, Duffy CDP. Predicting the diversity of photosynthetic light-harvesting using thermodynamics and machine learning. PLoS Comput Biol 2025; 21:e1012845. [PMID: 40067883 PMCID: PMC11896073 DOI: 10.1371/journal.pcbi.1012845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Oxygenic photosynthesis is responsible for nearly all biomass production on Earth, and may have been a prerequisite for establishing a complex biosphere rich in multicellular life. Life on Earth has evolved to perform photosynthesis in a wide range of light environments, but with a common basic architecture of a light-harvesting antenna system coupled to a photochemical reaction centre. Using a generalized thermodynamic model of light-harvesting, coupled with an evolutionary algorithm, we predict the type of light-harvesting structures that might evolve in light of different intensities and spectral profiles. We reproduce qualitatively the pigment composition, linear absorption profile and structural topology of the antenna systems of multiple types of oxygenic photoautotrophs, suggesting that the same physical principles underlie the development of distinct antenna structures in various light environments. Finally we apply our model to representative light environments that would exist on Earth-like exoplanets, predicting that both oxygenic and anoxygenic photosynthesis could evolve around low mass stars, though the latter would seem to work better around the coolest M-dwarfs. We see this as an interesting first step toward a general evolutionary model of basic biological processes and proof that it is meaningful to hypothesize on the nature of biology beyond Earth.
Collapse
Affiliation(s)
- Callum Gray
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Samir Chitnavis
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Tamara Buja
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Christopher D P Duffy
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Niedzwiedzki DM, Tomar RS, Akram F, Williams AM, Liu H. Absence of the Third Linker Domain of ApcE Subunit in Phycobilisome from Synechocystis 6803 Reduces Rods-To-Core Excitation Energy Transfer. Chemphyschem 2025; 26:e202400933. [PMID: 39500723 DOI: 10.1002/cphc.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Indexed: 02/18/2025]
Abstract
Phycobilisome (PBS) is a pigment-protein complex utilized by red algae and cyanobacteria in photosynthesis for light harvesting. A cyanobacterium Synechocystis sp. PCC 6803 contains PBS with a tricylindrical core built of allophycocyanin (APC) disks where six phycocyanin (PC) rods are attached. The top core cylinder is seemingly involved in attaching four PC rods and binding orange carotenoid protein (OCP) to quench excess of excitation energy. In this study, we have deleted the third linker domain (LD3) of ApcE subunit of PBS which assembles four APC discs into the top core cylinder. The mutation resulted in PBS with bicylindrical core, structurally comparable to the naturally existing PBS from Synechococcus 7942. Lack of LD3 and the top APC cylinder reduces the excitation energy transfer between PC and APC in the mutant. Moreover, these PBSs are more prone to light induced-photodamage and do not bind to the photoactivated orange carotenoid protein (OCP), a known PBS excitation quencher. These findings highlight the complex and elegant interplay between the PBS architecture and the functional efficiency, suggesting that in PBSs with naturally tri-cylindrical cores, the top cylinder has essential roles in recruiting the rods and proper binding of OCP.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rupal Singh Tomar
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
- Current address: Centre for Scientific and Applied Research, IPS Academy, Indore, 452012, M.P, India
| | - Fatima Akram
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Anna M Williams
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Haijun Liu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
5
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
6
|
Liistro E, Battistuzzi M, Cocola L, Claudi R, Poletto L, La Rocca N. Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108793. [PMID: 38870681 DOI: 10.1016/j.plaphy.2024.108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.
Collapse
Affiliation(s)
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy; CNR-IFN, Padua, Italy; Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | | | - Riccardo Claudi
- National Institute for Astrophysics, Astronomical Observatory of Padua (INAF-OAPD), Padua, Italy; Department of Mathematics and Physics, University Roma Tre, Rome, Italy
| | | | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy; Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy.
| |
Collapse
|
7
|
Kimber MS. Making a living off the rainbow's edge: How phycobilisomes adapt structurally to absorb far-red light. J Biol Chem 2024; 300:107262. [PMID: 38579990 PMCID: PMC11067327 DOI: 10.1016/j.jbc.2024.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Cyanobacteria harvest light by using architecturally complex, soluble, light-harvesting complexes known as phycobilisomes (PBSs). PBS diversity includes specialized subunit paralogs that are tuned to specific regions of the light spectrum; some cyanobacterial lineages can even absorb far-red light. In a recent issue of the Journal of Biological Chemistry, Gisriel et al. reported the cryo-electron microscopic structure of a far-red PBS core, showing how bilin binding in the α-subunits of allophycocyanin paralogs can modify the bilin-binding site to red shift the absorbance spectrum. This work helps explain how cyanobacteria can grow in environments where most of the visible light has been filtered out.
Collapse
Affiliation(s)
- Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|