1
|
Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D. Current Knowledge about the Impact of Microgravity on Gene Regulation. Cells 2023; 12:cells12071043. [PMID: 37048115 PMCID: PMC10093652 DOI: 10.3390/cells12071043] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Microgravity (µg) has a massive impact on the health of space explorers. Microgravity changes the proliferation, differentiation, and growth of cells. As crewed spaceflights into deep space are being planned along with the commercialization of space travelling, researchers have focused on gene regulation in cells and organisms exposed to real (r-) and simulated (s-) µg. In particular, cancer and metastasis research benefits from the findings obtained under µg conditions. Gene regulation is a key factor in a cell or an organism’s ability to sustain life and respond to environmental changes. It is a universal process to control the amount, location, and timing in which genes are expressed. In this review, we provide an overview of µg-induced changes in the numerous mechanisms involved in gene regulation, including regulatory proteins, microRNAs, and the chemical modification of DNA. In particular, we discuss the current knowledge about the impact of microgravity on gene regulation in different types of bacteria, protists, fungi, animals, humans, and cells with a focus on the brain, eye, endothelium, immune system, cartilage, muscle, bone, and various cancers as well as recent findings in plants. Importantly, the obtained data clearly imply that µg experiments can support translational medicine on Earth.
Collapse
Affiliation(s)
- Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
- Correspondence: ; Tel.: +45-28-992-179
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Maik Böhmer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dario A. Ricciardi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gilmar S. Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
2
|
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int J Mol Sci 2022; 23:ijms23063073. [PMID: 35328492 PMCID: PMC8953941 DOI: 10.3390/ijms23063073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Collapse
|
3
|
Schulz H, Strauch SM, Richter P, Wehland M, Krüger M, Sahana J, Corydon TJ, Wise P, Baran R, Lebert M, Grimm D. Latest knowledge about changes in the proteome in microgravity. Expert Rev Proteomics 2022; 19:43-59. [PMID: 35037812 DOI: 10.1080/14789450.2022.2030711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION : A long-term stay of humans in space causes a large number of well-known health problems and changes in protists and plants. Deep space exploration will increase the time humans or rodents will spend in microgravity (µg). Moreover, they are exposed to cosmic radiation, hypodynamia, and isolation. OMICS investigations will increase our knowledge of the underlying mechanisms of µg-induced alterations in vivo and in vitro. AREAS COVERED : We summarize the findings over the recent 3 years on µg-induced changes in the proteome of protists, plants, rodent and human cells. Considering the thematic orientation of microgravity-related publications in that time frame, we focus on medicine-associated findings such as the µg-induced antibiotic resistance of bacteria, the myocardial consequences of µg-induced calpain activation and the role of MMP13 in osteoarthritis. All these point to the fact that µg is an extreme stressor that could not be evolutionarily addressed on Earth. EXPERT COMMENTARY : In conclusion, when interpreting µg-experiments, the direct, mostly unspecific stress response, must be distinguished from specific µg-effects. For this reason, recent studies often do not consider single protein findings but place them in the context of protein-protein interactions. This enables an estimation of functional relationships, especially if these are supported by epigenetic and transcriptional data (multi-omics).
Collapse
Affiliation(s)
- Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Sebastian M Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89219-710, Brazil
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark
| | - Petra Wise
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, USA
| | - Ronni Baran
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany.,Space Biology Unlimited SAS, 24 Cours de l'Intendance, 33000 Bordeaux, France
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Research Group 'Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen' (MARS), Otto-von-Guericke University, Magdeburg, Germany.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
4
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
5
|
Melnik D, Sahana J, Corydon TJ, Kopp S, Nassef MZ, Wehland M, Infanger M, Grimm D, Krüger M. Dexamethasone Inhibits Spheroid Formation of Thyroid Cancer Cells Exposed to Simulated Microgravity. Cells 2020; 9:cells9020367. [PMID: 32033410 PMCID: PMC7072698 DOI: 10.3390/cells9020367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Detachment and the formation of spheroids under microgravity conditions can be observed with various types of intrinsically adherent human cells. In particular, for cancer cells this process mimics metastasis and may provide insights into cancer biology and progression that can be used to identify new drug/target combinations for future therapies. By using the synthetic glucocorticoid dexamethasone (DEX), we were able to suppress spheroid formation in a culture of follicular thyroid cancer (FTC)-133 cells that were exposed to altered gravity conditions on a random positioning machine. DEX inhibited the growth of three-dimensional cell aggregates in a dose-dependent manner. In the first approach, we analyzed the expression of several factors that are known to be involved in key processes of cancer progression such as autocrine signaling, proliferation, epithelial–mesenchymal transition, and anoikis. Wnt/β-catenin signaling and expression patterns of important genes in cancer cell growth and survival, which were further suggested to play a role in three-dimensional aggregation, such as NFKB2, VEGFA, CTGF, CAV1, BCL2(L1), or SNAI1, were clearly affected by DEX. Our data suggest the presence of a more complex regulation network of tumor spheroid formation involving additional signal pathways or individual key players that are also influenced by DEX.
Collapse
Affiliation(s)
- Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Pfälzer Platz, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6721-267
| |
Collapse
|
6
|
Bauer TJ, Gombocz E, Krüger M, Sahana J, Corydon TJ, Bauer J, Infanger M, Grimm D. Augmenting cancer cell proteomics with cellular images - A semantic approach to understand focal adhesion. J Biomed Inform 2019; 100:103320. [PMID: 31669288 DOI: 10.1016/j.jbi.2019.103320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/13/2023]
Abstract
If monolayers of cancer cells are exposed to microgravity, some of the cells cease adhering to the bottom of a culture flask and join three-dimensional aggregates floating in the culture medium. Searching reasons for this change in phenotype, we performed proteome analyses and learnt that accumulation and posttranslational modification of proteins involved in cell-matrix and cell-cell adhesion are affected. To further investigate these proteins, we developed a methodology to find histological images about focal adhesion complex (FA) proteins. Selecting proteins expressed by human FTC-133 and MCF-7 cancer cells and known to be incorporated in FA, we transformed the experimental data to RDF to establish a core semantic knowledgebase. Applying iterative SPARQL queries to Linked Open Databases, we augmented these data with additional functional, transformation- and aggregation-related relationships. Using reasoning, we retrieved publications with images about the spatial arrangement of proteins incorporated in FA. Contextualizing those images enabled us to gain insights about FA of cells changing their site of growth, and to independently validate our experimental results. This new way to link experimental proteome data to biomedical knowledge from various sources via searching images may generally be applied in science when images are a tool of knowledge dissemination.
Collapse
Affiliation(s)
- Thomas J Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Erich Gombocz
- Melissa Informatics, 2550 Ninth Street, Suite 114, Berkeley, CA, USA.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University-Magdeburg, D-39120 Magdeburg, Germany.
| |
Collapse
|
7
|
Krüger M, Melnik D, Kopp S, Buken C, Sahana J, Bauer J, Wehland M, Hemmersbach R, Corydon TJ, Infanger M, Grimm D. Fighting Thyroid Cancer with Microgravity Research. Int J Mol Sci 2019; 20:ijms20102553. [PMID: 31137658 PMCID: PMC6566201 DOI: 10.3390/ijms20102553] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Microgravity in space or simulated by special ground-based devices provides an unusual but unique environment to study and influence tumour cell processes. By investigating thyroid cancer cells in microgravity for nearly 20 years, researchers got insights into tumour biology that had not been possible under normal laboratory conditions: adherently growing cancer cells detach from their surface and form three-dimensional structures. The cells included in these multicellular spheroids (MCS) were not only altered but behave also differently to those grown in flat sheets in normal gravity, more closely mimicking the conditions in the human body. Therefore, MCS became an invaluable model for studying metastasis and developing new cancer treatment strategies via drug targeting. Microgravity intervenes deeply in processes such as apoptosis and in structural changes involving the cytoskeleton and the extracellular matrix, which influence cell growth. Most interestingly, follicular thyroid cancer cells grown under microgravity conditions were shifted towards a less-malignant phenotype. Results from microgravity research can be used to rethink conventional cancer research and may help to pinpoint the cellular changes that cause cancer. This in turn could lead to novel therapies that will enhance the quality of life for patients or potentially develop new preventive countermeasures.
Collapse
Affiliation(s)
- Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Christoph Buken
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Gravitational Biology, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
8
|
Kopp S, Krüger M, Bauer J, Wehland M, Corydon TJ, Sahana J, Nassef MZ, Melnik D, Bauer TJ, Schulz H, Schütte A, Schmitz B, Oltmann H, Feldmann S, Infanger M, Grimm D. Microgravity Affects Thyroid Cancer Cells during the TEXUS-53 Mission Stronger than Hypergravity. Int J Mol Sci 2018; 19:E4001. [PMID: 30545079 PMCID: PMC6321223 DOI: 10.3390/ijms19124001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most abundant tumor of the endocrine organs. Poorly differentiated thyroid cancer is still difficult to treat. Human cells exposed to long-term real (r-) and simulated (s-) microgravity (µg) revealed morphological alterations and changes in the expression profile of genes involved in several biological processes. The objective of this study was to examine the effects of short-term µg on poorly differentiated follicular thyroid cancer cells (FTC-133 cell line) resulting from 6 min of exposure to µg on a sounding rocket flight. As sounding rocket flights consist of several flight phases with different acceleration forces, rigorous control experiments are mandatory. Hypergravity (hyper-g) experiments were performed at 18g on a centrifuge in simulation of the rocket launch and s-µg was simulated by a random positioning machine (RPM). qPCR analyses of selected genes revealed no remarkable expression changes in controls as well as in hyper-g samples taken at the end of the first minute of launch. Using a centrifuge initiating 18g for 1 min, however, presented moderate gene expression changes, which were significant for COL1A1, VCL, CFL1, PTK2, IL6, CXCL8 and MMP14. We also identified a network of mutual interactions of the investigated genes and proteins by employing in-silico analyses. Lastly, µg-samples indicated that microgravity is a stronger regulator of gene expression than hyper-g.
Collapse
Affiliation(s)
- Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, 8000 Aarhus C, Denmark.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Thomas J Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, D-50931 Cologne, Germany.
| | - Andreas Schütte
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Burkhard Schmitz
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Hergen Oltmann
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Stefan Feldmann
- Airbus Defence and Space GmbH, Airbus-Allee 1, D-28199 Bremen, Germany.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| |
Collapse
|
9
|
Strauch SM, Grimm D, Corydon TJ, Krüger M, Bauer J, Lebert M, Wise P, Infanger M, Richter P. Current knowledge about the impact of microgravity on the proteome. Expert Rev Proteomics 2018; 16:5-16. [PMID: 30451542 DOI: 10.1080/14789450.2019.1550362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction: Microgravity (µg) is an extreme stressor for plants, animals, and humans and influences biological systems. Humans in space experience various health problems during and after a long-term stay in orbit. Various studies have demonstrated structural alterations and molecular biological changes within the cellular milieu of plants, bacteria, microorganisms, animals, and cells. These data were obtained by proteomics investigations applied in gravitational biology to elucidate changes in the proteome occurring when cells or organisms were exposed to real µg (r-µg) and simulated µg (s-µg). Areas covered: In this review, we summarize the current knowledge about the impact of µg on the proteome in plants, animals, and human cells. The literature suggests that µg impacts the proteome and thus various biological processes such as angiogenesis, apoptosis, cell adhesion, cytoskeleton, extracellular matrix proteins, migration, proliferation, stress response, and signal transduction. The changes in cellular function depend on the respective cell type. Expert commentary: This data is important for the topics of gravitational biology, tissue engineering, cancer research, and translational regenerative medicine. Moreover, it may provide new ideas for countermeasures to protect the health of future space travelers.
Collapse
Affiliation(s)
- Sebastian M Strauch
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Daniela Grimm
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany.,d Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Thomas J Corydon
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,e Department of Ophthalmology , Aarhus University Hospital , Aarhus C , Denmark
| | - Marcus Krüger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Johann Bauer
- f Max-Planck-Institute of Biochemistry, Information Retrieval Services , Martinsried , Germany
| | - Michael Lebert
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Petra Wise
- g Charles R. Drew University of Medicine and Science, AXIS Center , Los Angeles , CA , USA
| | - Manfred Infanger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Peter Richter
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
10
|
Semantic Analysis of Posttranslational Modification of Proteins Accumulated in Thyroid Cancer Cells Exposed to Simulated Microgravity. Int J Mol Sci 2018; 19:ijms19082257. [PMID: 30071661 PMCID: PMC6121900 DOI: 10.3390/ijms19082257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
When monolayers of tissue cancer cells of various origins are exposed to real or simulated microgravity, many cells leave the monolayer and assemble to three-dimensional (3D) aggregates (spheroids). In order to define the cellular machinery leading to this change in growth behavior of FTC-133 human thyroid cancer cells and MCF-7 breast cancer cells, we recently performed proteome analyses on these cell lines and determined the proteins’ accumulation in monolayer cells grown under 1g-conditions as well as in the cells of spheroids assembled under simulated microgravity during three and 14 days, respectively. At that time, an influence of the increment or decrement of some of the more than 5000 proteins detected in each cell line was investigated. In this study, we focused on posttranslational modifications (PTMs) of proteins. For this purpose, we selected candidates from the list of the proteins detected in the two preceding proteome analyses, which showed significant accumulation in spheroid cells as compared to 1g monolayer cells. Then we searched for those PTMs of the selected proteins, which according to the literature have already been determined experimentally. Using the Semantic Protocol and RDF Query Language (SPARQL), various databases were examined. Most efficient was the search in the latest version of the dbPTM database. In total, we found 72 different classes of PTMs comprising mainly phosphorylation, glycosylation, ubiquitination and acetylation. Most interestingly, in 35 of the 69 proteins, N6 residues of lysine are modifiable.
Collapse
|