1
|
Kuang L, You Y, Qi J, Chen J, Zhou X, Ji S, Cheng J, Kwan HY, Jiang P, Sun X, Su M, Wang M, Chen W, Luo R, Zhao X, Zhou L. Qi-dan-dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3481-3499. [PMID: 38456329 DOI: 10.1002/tox.24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 03/09/2024]
Abstract
CONTEXT Qi-dan-dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. OBJECTIVE This study reveals the mechanism by which QDD ameliorates DKD. MATERIALS AND METHODS The compounds in QDD were identified by high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD-low (QDD-L), and 2% QDD-high (QDD-H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose-treated HK-2 and NRK-52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. RESULTS A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial-mesenchymal transition (EMT) via the p38MAPK and AKT-mammalian target of rapamycin (mTOR) pathways. DISCUSSION AND CONCLUSION QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.
Collapse
Affiliation(s)
- Liuyan Kuang
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanting You
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Taishan People's Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Taishan, Guangdong, China
| | - Jieying Qi
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Chen
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinghong Zhou
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Ji
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaomin Sun
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengting Su
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wenxiao Chen
- Taishan People's Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Taishan, Guangdong, China
| | - Ren Luo
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yang YW, Zhou YW, Ge ML. The effect of externally applied traditional Chinese medicine in diabetic foot: A systematic review and meta-analysis of 34 RCTs. Foot (Edinb) 2023; 56:102045. [PMID: 37499379 DOI: 10.1016/j.foot.2023.102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
AIM This study aimed to investigate the clinical efficacy of externally applied Traditional Chinese Medicine (TCM) on diabetic foot. METHODS We searched the China Knowledge Network (CNKI), Wanfang Database, PubMed and Web of Science from inception to July 31, 2022, to find all randomized control trials (RCTs) related to externally applied TCMs in diabetic foot treatment. Information about the total effective rate, healing rate, and healing time were extracted. In addition, the relative risk (RR)/odds ratio (OR) or standardized mean difference (SMD) and 95 % confidence interval (CI) were calculated. RESULTS Finally, a total of 34 RCTs including 3758 patients were included in this meta-analysis. There were 5 articles that reported hydropathic compress with astrogalin, 14 articles that reported MEBO burn cream, 9 articles that reported compound cortex phellodendri liquid and 6 articles that reported Shengji Yuhong ointment. Compared with the basic treatment, the externally applied TCM (astrogalin, MEBO burn cream, compound cortex phellodendri liquid and Shengji Yuhong ointment) combined with basic treatment improved the total effective rate (RR = 1.31 [1.20, 1.42], P < 0.0001) and healing rate (RR = 1.84 [1.56, 2.17], P < 0.0001) and shortened the healing time (SMD = - 2.51 [- 3.39, - 1.63], P < 0.0001). CONCLUSION Our systematic review and meta-analysis revealed that common TCM applied externally could significantly improve the clinical efficacy comparing to the basic treatment.
Collapse
Affiliation(s)
- Yan-Wu Yang
- The Emergency Department, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yi-Wu Zhou
- The Emergency Department, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mei-Ling Ge
- The Center of Gerontology and Geriatrics (National Clinical Research Center for Geriatrics), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Zhou Z, Dun L, Yang Q, Tao J, Yu P, Xu H, Zhao N, Zheng N, An H, Yi P. Tongqiao Huoxue decoction alleviates neurological impairment following ischemic stroke via the PTGS2/NF-kappa B axis. Brain Res 2023; 1805:148247. [PMID: 36669713 DOI: 10.1016/j.brainres.2023.148247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Traditional Chinese medicine has emerged as promising targets for ischemic stroke (IS) therapy, yet the mechanism remains elusive. The current study was performed with an aim to investigate the action and mechanism of Tongqiao Huoxue decoction (TQHXD) affecting the neurological impairment secondary to IS based on network pharmacology. Based on network pharmacology and bioinformatics analysis, target genes and pathways involved in the treatment of TQHXD against IS were predicted. Serum containing TQHXD was prepared through blood collection from C57BL/6 mice after intragastric administration of TQHXD. The main results exhibited that Prostaglandin-endoperoxide synthase 2 (PTGS2) exhibited an abundance in IS and enrichment in the NF-kappa B signaling pathway, holding the potential as targets related to TQHXD treatment for IS. TQHXD was found to rescue cell viability, inhibit apoptosis, and alleviate inflammation under oxygen and glucose deprivation and reoxygenation (OGD/R) exposure. Furthermore, our in vivo experiment validated the protective function of TQHXD in ischemic brain damage stimulated by middle cerebral artery occlusion (MCAO). This protective action of TQHXD could be attenuated by overexpressing nuclear factor (NF)-kappa B, which was dependent on PTGS2. Collectively, TQHXD was demonstrated to ameliorate IS-induced neurological impairment by blocking the NF-kappa B signaling pathway and down-regulating PTGS2.
Collapse
Affiliation(s)
- Zheyi Zhou
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Linglu Dun
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Qian Yang
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Jingrui Tao
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Peishan Yu
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Hong Xu
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Na Zhao
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Na Zheng
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Hongwei An
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Ping Yi
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China.
| |
Collapse
|
4
|
TCMSID: a simplified integrated database for drug discovery from traditional chinese medicine. J Cheminform 2022; 14:89. [PMID: 36587232 PMCID: PMC9805110 DOI: 10.1186/s13321-022-00670-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been widely used in the treatment of various diseases for millennia. In the modernization process of TCM, TCM ingredient databases are playing more and more important roles. However, most of the existing TCM ingredient databases do not provide simplification function for extracting key ingredients in each herb or formula, which hinders the research on the mechanism of actions of the ingredients in TCM databases. The lack of quality control and standardization of the data in most of these existing databases is also a prominent disadvantage. Therefore, we developed a Traditional Chinese Medicine Simplified Integrated Database (TCMSID) with high storage, high quality and standardization. The database includes 499 herbs registered in the Chinese pharmacopeia with 20,015 ingredients, 3270 targets as well as corresponding detailed information. TCMSID is not only a database of herbal ingredients, but also a TCM simplification platform. Key ingredients from TCM herbs are available to be screened out and regarded as representatives to explore the mechanism of TCM herbs by implementing multi-tool target prediction and multilevel network construction. TCMSID provides abundant data sources and analysis platforms for TCM simplification and drug discovery, which is expected to promote modernization and internationalization of TCM and enhance its international status in the future. TCMSID is freely available at https://tcm.scbdd.com .
Collapse
|
5
|
Zhang Z, Fang J, Sun D, Zheng Y, Liu X, Li H, Hu Y, Liu Y, Zhang M, Liu W, Zhang X, Liu X. Study on the Mechanism of Radix Astragali against Renal Aging Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6987677. [PMID: 36561604 PMCID: PMC9767736 DOI: 10.1155/2022/6987677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Radix Astragali is widely used in the traditional Chinese medicine with the effect of antiaging. The purpose of this study is to explore the main active ingredients and targets of Radix Astragali against renal aging by network pharmacology and further to verify the mechanism of the main active ingredients in vitro. TCMSP, ETCM, and TCMID databases were used to screen active ingredients of Radix Astragali. Targets of active ingredients were predicted using BATMAN-TCM and cross validated using kidney aging-related genes obtained from GeneCards and NCBI database. Pathways enrichment and protein-protein interaction (PPI) analysis were performed on core targets. Additionally, a pharmacological network was constructed based on the active ingredients-targets-pathways. HK-2 cell was treated with D-galactose to generate a cell model of senescence. CCK-8 and β-galactosidase were used to detect the effect of Radix Astragali active components on cell proliferation and aging. ELISA was used to detect the expression of senescence-associated secreted protein (TGF-β and IL-6) in the cell culture supernatant. Western blot was used to detect the expression of key proteins in the SIRT1/p53 pathway. Five active ingredients (Astragaloside I, II, III, IV and choline) were identified from Radix Astragali, and all these active ingredients target a total of 128 genes. Enrichment analysis showed these genes were implicated in 153 KEGG pathways, including the p53, FoxO, and AMPK pathway. 117 proteins and 572 interactions were found in PPI network. TP53 and SIRT1 were two hub genes in PPI network, which interacted with each other. The pharmacological network showed that the five main active ingredients target on some coincident genes, including TP53 and SIRT1. These targeted genes were involved in the p53, FoxO, and AMPK pathway. Proliferation of HK-2 cells was increased by Astragaloside IV treatment compared with that of the D-Gal treatment group. However, the proliferation of the SA-β-gal positive cells were inhibited. The expression of TGF-β and IL-6 in the D-Gal group was higher than that in the normal group, and the treatment of Astragaloside IV could significantly reduce the expression of TGF-β and IL-6. The expression of SIRT1 in the Astragaloside IV group was higher than that in the D-Gal group. However, the expression of p53 and p21 was less in the Astragaloside IV group than that in the D-Gal group. This study suggested that Astragaloside IV is an important active ingredient of Radix Astragali in the treatment of kidney aging via the SITR1-p53 pathway.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaqin Zheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Xinhui Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Hui Li
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaling Hu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yuxiang Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Mingyu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xuejun Liu
- Department of Geriatrics, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| |
Collapse
|
6
|
Ye YW, Yan ZY, He LP, Li CP. More studies are necessary to establish the effectiveness of Jinhuang powder in the treatment of diabetic foot. World J Diabetes 2022; 13:581-583. [PMID: 36051428 PMCID: PMC9329839 DOI: 10.4239/wjd.v13.i7.581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a common global public health problem that can cause serious illness and premature death. Diabetic foot ulcer, one of the complications of diabetes, is a major cause of morbidity and mortality and is associated with many other devastating complications. Previous study found that a group of traditional Chinese medicine (TCM) can be used for treating diabetic foot ulcers. More and more attention is being paid to the use of Chinese medicine to heal diabetic feet. Under the guidance of relevant theories of traditional Chinese medicine, more studies are needed to reveal the key active components and related signal pathways of TCM in the treatment of diabetic foot ulcer. One clinical study explored the treatment of diabetic foot with infection combined moist exposed burn ointment with Jinhuang powder. However, large-scale multi-center, double blind, randomized, placebo-controlled clinical trials and animal studies are necessary to establish the effectiveness of Jinhuang powder in the treatment of diabetic foot.
Collapse
Affiliation(s)
- Ya-Wen Ye
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zi-Yun Yan
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Cui-Ping Li
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|