1
|
Ming W, Guo X, Zhang G, Liu Y, Wang Y, Zhang H, Liang H, Yang Y. Recent advances in the precision control strategy of artificial pancreas. Med Biol Eng Comput 2024; 62:1615-1638. [PMID: 38418768 DOI: 10.1007/s11517-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The scientific diagnosis and treatment of patients with diabetes require frequent blood glucose testing and insulin delivery to normoglycemia. Therefore, an artificial pancreas with a continuous blood glucose (BG) monitoring function is an urgent research target in the medical industry. The problem of closed-loop algorithmic control of the BG with a time delay is a key and difficult issue that needs to be overcome in the development of an artificial pancreas. Firstly, the composition, structure, and control characteristics of the artificial pancreas are introduced. Subsequently, the research progress of artificial pancreas control algorithms is reviewed, and the characteristics, advantages, and disadvantages of proportional-integral-differential control, model predictive control, and artificial intelligence control are compared and analyzed to determine whether they are suitable for the practical application of the artificial pancreas. Additionally, key advancements in areas such as blood glucose data monitoring, adaptive models, wearable devices, and fully automated artificial pancreas systems are also reviewed. Finally, this review highlights that meal prediction, control safety, integration, streamlining the optimization of control algorithms, constant temperature preservation of insulin, and dual-hormone artificial pancreas are issues that require further attention in the future.
Collapse
Affiliation(s)
- Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, 450002, Zhengzhou, China
| | - Xudong Guo
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, 450002, Zhengzhou, China
| | - Guojun Zhang
- Guangdong HUST Industrial Technology Research Institute, 523808, Dongguan, China
| | - Yinxia Liu
- Prenatal Diagnosis Center of Dongguan Kanghua Hospital, 523808, Dongguan, China
| | - Yongxin Wang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Hongmei Zhang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Haofang Liang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Yuan Yang
- Laboratory of Regenerative Medicine in Sports Science, School of Sports Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
2
|
Mujahid O, Contreras I, Beneyto A, Vehi J. Generative deep learning for the development of a type 1 diabetes simulator. COMMUNICATIONS MEDICINE 2024; 4:51. [PMID: 38493243 PMCID: PMC10944502 DOI: 10.1038/s43856-024-00476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) simulators, crucial for advancing diabetes treatments, often fall short of capturing the entire complexity of the glucose-insulin system due to the imprecise approximation of the physiological models. This study introduces a simulation approach employing a conditional deep generative model. The aim is to overcome the limitations of existing T1D simulators by synthesizing virtual patients that more accurately represent the entire glucose-insulin system physiology. METHODS Our methodology utilizes a sequence-to-sequence generative adversarial network to simulate virtual T1D patients causally. Causality is embedded in the model by introducing shifted input-output pairs during training, with a 90-min shift capturing the impact of input insulin and carbohydrates on blood glucose. To validate our approach, we train and evaluate the model using three distinct datasets, each consisting of 27, 12, and 10 T1D patients, respectively. In addition, we subject the trained model to further validation for closed-loop therapy, employing a state-of-the-art controller. RESULTS The generated patients display statistical similarity to real patients when evaluated on the time-in-range results for each of the standard blood glucose ranges in T1D management along with means and variability outcomes. When tested for causality, authentic causal links are identified between the insulin, carbohydrates, and blood glucose levels of the virtual patients. The trained generative model demonstrates behaviours that are closer to reality compared to conventional T1D simulators when subjected to closed-loop insulin therapy using a state-of-the-art controller. CONCLUSIONS These results highlight our approach's capability to accurately capture physiological dynamics and establish genuine causal relationships, holding promise for enhancing the development and evaluation of therapies in diabetes.
Collapse
Affiliation(s)
- Omer Mujahid
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain
| | - Ivan Contreras
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain
| | - Aleix Beneyto
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain
| | - Josep Vehi
- Modelling, Identification and Control Engineering Laboratory, Institut d'Informatica i Aplicacions, Universitat de Girona, Girona, 17003, Girona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Girona, Spain.
| |
Collapse
|
3
|
Ibrahim M, Beneyto A, Contreras I, Vehi J. An ensemble machine learning approach for the detection of unannounced meals to enhance postprandial glucose control. Comput Biol Med 2024; 171:108154. [PMID: 38382387 DOI: 10.1016/j.compbiomed.2024.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Hybrid automated insulin delivery systems enhance postprandial glucose control in type 1 diabetes, however, meal announcements are burdensome. To overcome this, we propose a machine learning-based automated meal detection approach; METHODS:: A heterogeneous ensemble method combining an artificial neural network, random forest, and logistic regression was employed. Trained and tested on data from two in-silico cohorts comprising 20 and 47 patients. It accounted for various meal sizes (moderate to high) and glucose appearance rates (slow and rapid absorbing). To produce an optimal prediction model, three ensemble configurations were used: logical AND, majority voting, and logical OR. In addition to the in-silico data, the proposed meal detector was also trained and tested using the OhioT1DM dataset. Finally, the meal detector is combined with a bolus insulin compensation scheme; RESULTS:: The ensemble majority voting obtained the best meal detector results for both the in-silico and OhioT1DM cohorts with a sensitivity of 77%, 94%, 61%, precision of 96%, 89%, 72%, F1-score of 85%, 91%, 66%, and with false positives per day values of 0.05, 0.19, 0.17, respectively. Automatic meal detection with insulin compensation has been performed in open-loop insulin therapy using the AND ensemble, chosen for its lower false positive rate. Time-in-range has significantly increased 10.48% and 16.03%, time above range was reduced by 5.16% and 11.85%, with a minimal time below range increase of 0.35% and 2.69% for both in-silico cohorts, respectively, compared to the results without a meal detector; CONCLUSION:: To increase the overall accuracy and robustness of the predictions, this ensemble methodology aims to take advantage of each base model's strengths. All of the results point to the potential application of the proposed meal detector as a separate module for the detection of meals in automated insulin delivery systems to achieve improved glycemic control.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Modeling, Identification and Control Engineering Laboratory (MICELab), Institut d'Informàtica i Aplicacions, Universitat de Girona, Girona, Spain
| | - Aleix Beneyto
- Modeling, Identification and Control Engineering Laboratory (MICELab), Institut d'Informàtica i Aplicacions, Universitat de Girona, Girona, Spain
| | - Ivan Contreras
- Modeling, Identification and Control Engineering Laboratory (MICELab), Institut d'Informàtica i Aplicacions, Universitat de Girona, Girona, Spain
| | - Josep Vehi
- Modeling, Identification and Control Engineering Laboratory (MICELab), Institut d'Informàtica i Aplicacions, Universitat de Girona, Girona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
4
|
Jacobs PG, Herrero P, Facchinetti A, Vehi J, Kovatchev B, Breton MD, Cinar A, Nikita KS, Doyle FJ, Bondia J, Battelino T, Castle JR, Zarkogianni K, Narayan R, Mosquera-Lopez C. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Rev Biomed Eng 2024; 17:19-41. [PMID: 37943654 DOI: 10.1109/rbme.2023.3331297] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid. METHODS Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources. SIGNIFICANCE These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.
Collapse
|
5
|
Estremera E, Beneyto A, Cabrera A, Contreras I, Vehí J. Intermittent closed-loop blood glucose control for people with type 1 diabetes on multiple daily injections. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107568. [PMID: 37137221 DOI: 10.1016/j.cmpb.2023.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Recent advances in Automated Insulin Delivery systems have been shown to dramatically improve glycaemic control and reduce the risk of hypoglycemia in people with type 1 diabetes. However, they are complex systems that require specific training and are not affordable for most. Attempts to reduce the gap with closed-loop therapies using advanced dosing advisors have so far failed, mainly because they require too much human intervention. With the advent of smart insulin pens, one of the main constraints (having reliable bolus and meal information) disappears and new strategies can be employed. This is our starting hypothesis, which we have validated in a very demanding simulator. In this paper, we propose an intermittent closed-loop control system specifically intended for multiple daily injection therapy to bring the benefits of artificial pancreas to the application of multiple daily injections. METHODS The proposed control algorithm is based on model predictive control and integrates two patient-driven control actions. Correction insulin boluses are automatically computed and recommended to the patient to minimize the duration of hyperglycemia. Rescue carbohydrates are also triggered to avoid hypoglycemia episodes. The algorithm can adapt to different patient lifestyles with customizable triggering conditions, closing the gap between practicality and performance. The proposed algorithm is compared with conventional open-loop therapy, and its superiority is demonstrated through extensive in silico evaluations using realistic cohorts and scenarios. The evaluations were conducted in a cohort of 47 virtual patients. We also provide detailed explanations of the implementation, imposed constraints, triggering conditions, cost functions, and penalties for the algorithm. RESULTS The in-silico outcomes combining the proposed closed-loop strategy with slow-acting insulin analog injections at 09:00 h resulted in percentages of time in range (TIR) (70-180 mg/dL) of 69.5%, 70.6%, and 70.4% for glargine-100, glargine-300, and degludec-100, respectively, and injections at 20:00 h resulted in percentages of TIR of 70.5%, 70.3%, and 71.6%, respectively. In all the cases, the percentages of TIR were considerably higher than those obtained from the open-loop strategy, being only 50.7%, 53.9%, and 52.2% for daytime injection and 55.5%, 54.1%, and 56.9% for nighttime injection. Overall, the occurrence of hypoglycemia and hyperglycemia was notably reduced using our approach. CONCLUSIONS Event-triggering model predictive control in the proposed algorithm is feasible and may meet clinical targets for people with type 1 diabetes.
Collapse
Affiliation(s)
- Ernesto Estremera
- Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain.
| | - Aleix Beneyto
- Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain.
| | - Alvis Cabrera
- Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain.
| | - Iván Contreras
- Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain.
| | - Josep Vehí
- Department of Electrical, Electronic and Automatic Engineering, University of Girona, 17004 Girona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|