1
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Mechanical experimentation of the gastrointestinal tract: a systematic review. Biomech Model Mechanobiol 2024; 23:23-59. [PMID: 37935880 PMCID: PMC10901955 DOI: 10.1007/s10237-023-01773-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 11/09/2023]
Abstract
The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature (n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers' own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation-extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
- Laboratoire d'Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
2
|
Nagaraja S, Leichsenring K, Ambati M, De Lorenzis L, Böl M. On a phase-field approach to model fracture of small intestine walls. Acta Biomater 2021; 130:317-331. [PMID: 34119714 DOI: 10.1016/j.actbio.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
We address anisotropic elasticity and fracture in small intestine walls (SIWs) with both experimental and computational methods. Uniaxial tension experiments are performed on porcine SIW samples with varying alignments and quantify their nonlinear elastic anisotropic behavior. Fracture experiments on notched SIW strips reveal a high sensitivity of the crack propagation direction and the failure stress on the tissue orientation. From a modeling point of view, the observed anisotropic elastic response is studied with a continuum mechanical model stemming from a strain energy density with a neo-Hookean component and an anisotropic component with four families of fibers. Fracture is addressed with the phase-field approach, featuring two-fold anisotropy in the fracture toughness. Elastic and fracture model parameters are calibrated based on the experimental data, using the maximum and minimum limits of the experimental stress-stretch data set. A very good agreement between experimental data and computational results is obtained, the role of anisotropy being effectively captured by the proposed model in both the elastic and the fracture behavior. STATEMENT OF SIGNIFICANCE: This article reports a comprehensive experimental data set on the mechanical failure behavior of small intestinal tissue, and presents the corresponding protocols for preparing and testing the samples. On the one hand, the results of this study contribute to the understanding of small intestine mechanics and thus to understanding of load transfer mechanisms inside the tissue. On the other hand, these results are used as input for a phase-field modelling approach, presented in this article. The presented model can reproduce the mechanical failure behavior of the small intestine in an excellent way and is thus a promising tool for the future mechanical description of diseased small intestinal tissue.
Collapse
|
3
|
Bao L, Zhao J, Liao D, Wang G, Gregersen H. Pressure overload changes mesenteric afferent nerve responses in a stress-dependent way in a fasting rat model. Biomech Model Mechanobiol 2020; 19:1741-1753. [PMID: 32072371 DOI: 10.1007/s10237-020-01305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022]
Abstract
It is well known that overload changes the mechanical properties of biological tissues and fasting changes the responsiveness of intestinal afferents. This study aimed to characterize the effect of overload on mechanosensitivity in mesenteric afferent nerves in normal and fasted Sprague-Dawley rats. Food was restricted for 7 days in the Fasting group. Jejunal whole afferent nerve firing was recorded during three distensions, i.e., ramp distension to 80 cmH2O luminal pressure (D1), sustained distension to 120 cmH2O for 2 min (D2), and again to 80 cmH2O (D3). Multiunit afferent recordings were separated into low-threshold (LT) and wide-dynamic-range (WDR) single-unit activity for D1 and D3. Intestinal deformation (strain), distension load (stress), and firing frequency of mesenteric afferent nerve bundles [spike rate increase ratio (SRIR)] were compared at 20 cmH2O and 40 cmH2O and maximum pressure levels among distensions and groups. SRIR and stress changes showed the same pattern in all distensions. The SRIR and stress were larger in the Fasting group compared to the Control group (P < 0.01). SRIR was lower in D3 compared to D1 in controls (P < 0.05) and fasting rats (P < 0.01). Total single units and LT were significantly lower in Fasting group than in Controls at D3. LT was significantly higher in D3 than in D1 in Controls. Furthermore, correlation was found between SRIR with stress (R = 0.653, P < 0.001). In conclusion, overload decreased afferent mechanosensitivity in a stress-dependent way and was most pronounced in fasting rats. Fasting shifts LT to WDR and high pressure shifts WDR to LT in response to mechanical stimulation.
Collapse
Affiliation(s)
- Lingxia Bao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Jingbo Zhao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Donghua Liao
- Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark.,Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital and Clinical Institute, Faculty of Health Sciences, Aalborg University, Aalborg, Denmark
| | - Guixue Wang
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China. .,Department of Surgery, GIOME, the Chinese University of Hong Kong, Pok Fu Lam, Hong Kong, SAR. .,Department of Surgery, Clinical Science Building, GIOME, Prince of Wales Hospital, Ngan Street, Shatin, Hong Kong.
| |
Collapse
|
4
|
Time-Dependent Alterations of Gut Wall Integrity in Small Bowel Obstruction in Mice. J Surg Res 2019; 233:249-255. [DOI: 10.1016/j.jss.2018.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
|
5
|
The Turning Point for Morphomechanical Remodeling During Complete Intestinal Obstruction in Rats Occurs After 12–24 h. Ann Biomed Eng 2018; 46:705-716. [DOI: 10.1007/s10439-018-1992-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
|
6
|
Sun D, Zhao J, Liao D, Chen P, Gregersen H. Shear Modulus of the Partially Obstructed Rat Small Intestine. Ann Biomed Eng 2016; 45:1069-1082. [DOI: 10.1007/s10439-016-1739-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
|
7
|
Yang J, Zhao J, Chen P, Nakaguchi T, Grundy D, Gregersen H. Interdependency between mechanical parameters and afferent nerve discharge in hypertrophic intestine of rats. Am J Physiol Gastrointest Liver Physiol 2016; 310:G376-86. [PMID: 26585414 DOI: 10.1152/ajpgi.00192.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/13/2015] [Indexed: 01/31/2023]
Abstract
Partial intestinal obstruction causes smooth muscle hypertrophy, enteric neuronal plasticity, motility disorders, and biomechanical remodeling. In this study we characterized the stimulus-response function of afferent fibers innervating the partially obstructed jejunum. A key question is whether changes in afferent firing arise from remodeled mechanical tissue properties or from adaptive afferent processes. Partial obstruction was created by placing a polyethylene ring for 2 wk in jejunum of seven rats. Sham obstruction was made in six rats and seven rats served as normal controls. Firing from mesenteric afferent nerve bundles was recorded during mechanical ramp, relaxation, and creep tests. Stress-strain, spike rate increase ratio (SRIR), and firing rate in single units were assessed for evaluation of interdependency of the mechanical stimulations, histomorphometry data, and afferent nerve discharge. Partial intestinal obstruction resulted in hypertrophy and jejunal stiffening proximal to the obstruction site. Low SRIR at low strains during fast distension and at high stresses during slow distension was found in the obstructed rats. Single unit analysis showed increased proportion of mechanosensitive units but absent high-threshold (HT) units during slow stimulation, decreased number of HT units during fast stimulation, and shift from HT sensitivity towards low threshold sensitivity in the obstructed jejunum. Biomechanical remodeling and altered afferent response to mechanical stimulations were found in the obstructed jejunum. Afferents from obstructed jejunum preserved their function in encoding ongoing mechanical stimulation but showed changes in their responsiveness. The findings support that mechanical factors rather than adaption are important for afferent remodeling.
Collapse
Affiliation(s)
- Jian Yang
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; Bioengineering College of Chongqing University, Chongqing, China
| | - Jingbo Zhao
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Toshiya Nakaguchi
- Graduate School of Advanced Integrated Science, Chiba University, Chiba, Japan; and
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; Bioengineering College of Chongqing University, Chongqing, China;
| |
Collapse
|
8
|
Fullard L, Lammers W, Wake GC, Ferrua MJ. Propagating longitudinal contractions in the ileum of the rabbit – Efficiency of advective mixing. Food Funct 2014; 5:2731-42. [DOI: 10.1039/c4fo00487f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The flow and mixing of viscous fluids in the small intestine for various types of longitudinal motility.
Collapse
Affiliation(s)
- Luke Fullard
- Institute of Fundamental Sciences
- Massey University
- Palmerston North, New Zealand
| | - Willem Lammers
- Department of Physiology
- College of Medicine and Health Sciences
- United Arab Emirates University
- United Arab Emirates
| | - Graeme C. Wake
- Institute of Natural and Mathematical Sciences
- Massey University
- Auckland, New Zealand
| | - Maria J. Ferrua
- The Riddet Institute
- Massey University
- Palmerston North, New Zealand
| |
Collapse
|