1
|
Eskandari AH, Ghezelbash F, Shirazi-Adl A, Arjmand N, Larivière C. Effect of a back-support exoskeleton on internal forces and lumbar spine stability during low load lifting task. APPLIED ERGONOMICS 2025; 123:104407. [PMID: 39489061 DOI: 10.1016/j.apergo.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
This study assessed the effect of a small-torque generating passive back-support exoskeleton during a low demanding occupational task, namely a repetitive lifting/lowering of an empty crate between the knee and shoulder heights. A comprehensive set of outcomes was considered, ranging from the measured trunk muscle activation and trunk movement to the estimated muscle group forces/coordination, spine loading and spine stability, using a dynamic subject-specific EMG-assisted musculoskeletal model. The exoskeleton decreased back muscle activation and corresponding muscle forces in the lowering phase and reduced spinal loading at larger trunk flexion angles (decreased peak compression and shear forces by ∼ 15%). However, the effect sizes were small (ηG2 < .06), questioning the usefulness of this type of exoskeleton, even for light tasks. On the other hand, the unique results of the present study showed that coordination between the main muscle groups as well as spinal stability remained unchanged with low effect sizes, suggesting that the use of this exoskeleton is safe.
Collapse
Affiliation(s)
- Amir Hossein Eskandari
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada
| | - Farshid Ghezelbash
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada.
| |
Collapse
|
2
|
Kanwar KD, Cannon J, Nichols DL, Salem GJ, Mann MD. Injury risk-factor differences between two golf swing styles: a biomechanical analysis of the lumbar spine, hip and knee. Sports Biomech 2024; 23:1504-1525. [PMID: 34280079 DOI: 10.1080/14763141.2021.1945672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
The golf swing has been associated with mechanical injury risk factors at many joints. One swing, the Minimalist Golf Swing, was hypothesised to reduce lumbar spine, lead hip, and lead knee ranges of motion and peak net joint moments, while affecting swing performance, compared to golfers' existing swings. Existing and MGS swings of 15 golfers with handicaps ranging from +2 to -20 were compared. During MGS downswing, golfers had 18.3% less lumbar spine transverse plane ROM, 40.7 and 41.8% less lead hip sagittal and frontal plane ROM, and 39.2% less lead knee sagittal plane ROM. MGS reduced lead hip extensor, abductor, and internal rotator moments by 17.8, 19.7 and 43%, while lead knee extensor, abductor, adductor and external rotator moments were reduced by 24.1, 26.6, 37 and 68.8% respectively. With MGS, club approach was 2° shallower, path 4° more in-to-out and speed 2 m/s slower. MGS reduced certain joint ROM and moments that are linked to injury risk factors, while influencing club impact factors with varying effect. Most golf injuries are from overuse, so reduced loads per cycle with MGS may extend the healthy life of joints, and permit golfers to play injury-free for more years.
Collapse
Affiliation(s)
- Kiran D Kanwar
- Department of Kinesiology, Texas Woman's University, Denton, TX, USA
- Golf Department, Stanton University, Garden Grove, CA, USA
| | - Jordan Cannon
- Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - David L Nichols
- Department of Kinesiology, Texas Woman's University, Denton, TX, USA
| | - George J Salem
- Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Mark D Mann
- Department of Kinesiology, Texas Woman's University, Denton, TX, USA
| |
Collapse
|
3
|
Galbraith GB, Larson DJ, Brown SHM. Attentional Distractions Do Not Influence Lumbar Spine Local Dynamic Stability during Repetitive Flexion-Extension Movements. J Mot Behav 2024; 56:545-554. [PMID: 38782408 DOI: 10.1080/00222895.2024.2355932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The association between low back pain and lumbar spine local dynamic stability (LDS) appears to be modulated by if and how someone catastrophizes about pain, suggesting that the cognitive perceptions of pain may influence an individual's ability to control lumbar spine motion. Previous work also demonstrates that directing cognitive resources and attentional focus can influence movement performance. Therefore, we aimed to examine whether distracting attentional focus would influence lumbar spine LDS during repetitive flexion-extension movements. Sixteen participants performed repetitive spine flexion-extension movements under two baseline conditions (pre- and post-), and while attentional focus was distracted by either an external sensory stimulus or a cognitive-motor dual-task, both targeted at the hands. Lumbar spine LDS was examined over 30 continuous movement repetitions using maximum Lyapunov exponents. In comparison to both Baseline and Post-Baseline trials, the perceived mental workload was significantly elevated during the cognitive-motor dual-task trial but not the external sensory stimulus trial. The only statistically significant effect on LDS occurred in the Post-Baseline trial, where LDS was higher than in the cognitive-motor dual-task. In combination with previous work, these findings suggest that distracting attentional focus during repetitive lumbar spine flexion-extension movements does not have a negative influence on lumbar spine LDS.
Collapse
Affiliation(s)
- Gabrielle B Galbraith
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Ghezelbash F, Hossein Eskandari A, Robert-Lachaine X, Cao S, Pesteie M, Qiao Z, Shirazi-Adl A, Larivière C. Machine learning applications in spine biomechanics. J Biomech 2024; 166:111967. [PMID: 38388222 DOI: 10.1016/j.jbiomech.2024.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024]
Abstract
Spine biomechanics is at a transformation with the advent and integration of machine learning and computer vision technologies. These novel techniques facilitate the estimation of 3D body shapes, anthropometrics, and kinematics from as simple as a single-camera image, making them more accessible and practical for a diverse range of applications. This study introduces a framework that merges these methodologies with traditional musculoskeletal modeling, enabling comprehensive analysis of spinal biomechanics during complex activities from a single camera. Additionally, we aim to evaluate their performance and limitations in spine biomechanics applications. The real-world applications explored in this study include assessment in workplace lifting, evaluation of whiplash injuries in car accidents, and biomechanical analysis in professional sports. Our results demonstrate potential and limitations of various algorithms in estimating body shape, kinematics, and conducting in-field biomechanical analyses. In industrial settings, the potential to utilize these new technologies for biomechanical risk assessments offers a pathway for preventive measures against back injuries. In sports activities, the proposed framework provides new opportunities for performance optimization, injury prevention, and rehabilitation. The application in forensic domain further underscores the wide-reaching implications of this technology. While certain limitations were identified, particularly in accuracy of predictions, complex interactions, and external load estimation, this study demonstrates their potential for advancement in spine biomechanics, heralding an optimistic future in both research and practical applications.
Collapse
Affiliation(s)
- Farshid Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada.
| | - Amir Hossein Eskandari
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada; Institut de Recherche Robert Sauvé en Santé et en Sécurité du Travail, Montréal, Canada
| | | | - Shufan Cao
- Department of Mechanical Engineering and Material Science, Duke University, USA
| | - Mehran Pesteie
- Department of Electrical and Computer Engineering, University of British Columbia, Canada
| | - Zhuohua Qiao
- Department of Mechanical Engineering, McGill University, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Christian Larivière
- Institut de Recherche Robert Sauvé en Santé et en Sécurité du Travail, Montréal, Canada
| |
Collapse
|
5
|
Larson DJ, Summers E, Brown SHM. Exploring how metronome pacing at varying movement speeds influences local dynamic stability and coordination variability of lumbar spine motion during repetitive lifting. Hum Mov Sci 2024; 93:103178. [PMID: 38217964 DOI: 10.1016/j.humov.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Auditory metronomes have been used to preserve movement consistency when examining local dynamic stability (LDS) and coordination variability (CV) of lumbar spine motion during repetitive movements. However, the potential influence of the metronome itself on these outcome measures has rarely been considered. Therefore, this study investigated the influence of different metronome paces (i.e., lifting speeds) on measures of lumbar spine LDS and thorax-pelvis CV during a repetitive lifting/lowering task in comparison to self-paced movements. Ten participants completed 5 repetitive lift/lower trials, where participants completed 35 consecutive repetitions (analysis on last 30 repetitions) at a self-selected pace for the first and last trial, and were paced by a 10 lift/min, 15 lift/min, and 20 lift/min metronome, in randomized order, for the remaining three trials. The average self-paced lift/lower speed before and after experiencing the three different metronome paced speeds was 16.2 (±1.02) and 17.2 (±0.73) lifts/min, respectively, and the most-preferred metronome pace trial was 15 lifts/min. Thorax-pelvis CV during the self-paced trials were similar (p > 0.05) to the 15 lift/min metronome paced trials, while greater thorax-pelvis CV was observed for the 10 lift/min compared to the 15 lift/min and 20 lift/min and second self-paced trial (all p < 0.026). This movement speed effect was not observed for lumbar spine LDS; however, more-dynamically stable movements were observed during all metronome paced trials in comparison to the self-paced trials. This study highlights that careful consideration is required when employing a metronome to control/manipulate movement characteristics while examining neuromuscular control using non-linear dynamical systems measures.
Collapse
Affiliation(s)
- Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada; Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Elspeth Summers
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Eskandari AH, Ghezelbash F, Shirazi-Adl A, Larivière C. Comparative evaluation of different spinal stability metrics. J Biomech 2024; 162:111901. [PMID: 38160088 DOI: 10.1016/j.jbiomech.2023.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/13/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Direct in vivo measurements of spinal stability are not possible, leaving computational estimations (such as dynamic time series and structural analyses) as the feasible option. However, differences between different stability assessment approaches and metrics remain unclear. To explore this, we asked 32 participants to perform 35 cycles of repetitive lifts with and without load (4/2.6 kg for males/females). EMG signals and 3D kinematics were collected via 12 surface electrodes and 17 inertial sensors, and three dynamical stability measures were computed: short and long temporal and conventional maximum Lyapunov exponents (LyE) and maximum Floquet multipliers (FM). A dynamic subject-specific EMG-assisted musculoskeletal model computed four structural stability measures (critical muscle stiffness coefficient at which spine becomes unstable, average spine stiffness, minimum and geometric average of Hessian matrix eigenvalues). Across cycles, dynamical and structural stability outcomes varied noticeably. Temporal short-term LyE and all structural stability measures were more influenced by the cycle percentage (posture factor) than by phase (lifting, lowering) or load factor. The effect of all factors were non-significant for FM and long LyE, except for the posture on LyE-L with a small effect size. Pearson's correlations revealed a weak to moderate, or non-existent, correlation between structural and dynamical stability metrics, with small shared variances, underscoring their distinct and independent nature and theoretical foundations. Moreover, the low sensitivity of dynamic measures to posture and load factors, found in this study, calls for further examination. Considering the limitations and shortcomings of both dynamical and structural stability assessment approaches, there is a need for the development of improved musculoskeletal stability evaluation techniques.
Collapse
Affiliation(s)
- Amir Hossein Eskandari
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada.
| | - Farshid Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal (CCSMTL), Canada
| |
Collapse
|
7
|
Larson DJ, Brown SHM. Effects of trunk extensor muscle fatigue on repetitive lift (re)training using an augmented tactile feedback approach. ERGONOMICS 2023; 66:1919-1934. [PMID: 36636970 DOI: 10.1080/00140139.2023.2168769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Augmented tactile and performance feedback has been used to (re)train a modified lifting technique to reduce lumbar spine flexion, which has been associated with low back disorder development during occupational repetitive lifting tasks. However, it remains unknown if the presence of trunk extensor neuromuscular fatigue influences learning of this modified lifting technique. Therefore, we compared the effectiveness of using augmented tactile and performance feedback to reduce lumbar spine flexion during a repetitive lifting task, in both unfatigued and fatigued states. Participants completed repetitive lifting tests immediately before and after training, and 1-week later, with half of the participants completing training after fatiguing their trunk extensor muscles. Both groups demonstrated learning of the modified lifting technique as demonstrated by increased thorax-pelvis coordination variability and reduced lumbar range of motion variability; however, experiencing trunk extensor neuromuscular fatigue during lift (re)training may have slight negative influences on learning the modified lifting technique. Practitioner summary: An augmented lift (re)training paradigm using tactile cueing and performance feedback regarding key movement features (i.e. lumbar spine flexion) can effectively (re)train a modified lifting technique to reduce lumbar flexion and redistribute motion to the hips and knees. However, performing (re)training while fatigued could slightly hinder learning this lifting technique.
Collapse
Affiliation(s)
- Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
8
|
Influence of back muscle fatigue on dynamic lumbar spine stability and coordination variability of the thorax-pelvis during repetitive flexion–extension movements. J Biomech 2022; 133:110959. [DOI: 10.1016/j.jbiomech.2022.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
9
|
Ghezelbash F, Shahvarpour A, Larivière C, Shirazi-Adl A. Evaluating stability of human spine in static tasks: a combined in vivo-computational study. Comput Methods Biomech Biomed Engin 2021; 25:1156-1168. [PMID: 34839772 DOI: 10.1080/10255842.2021.2004399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Various interpretations and parameters have been proposed to assess spinal stability such as antagonist muscle coactivity, trunk stiffness and spinal buckling load; however, the correlation between these parameters remains unknown. We evaluated spinal stability during different tasks while changing the external moment and load height and investigated likely relationships between different EMG- and model-based parameters (e.g., EMG coactivity ratio, trunk stiffness, force coactivity ratio) and stability margins. EMG and kinematics of 40 young healthy subjects were recorded during various quasi-static tasks. Muscle forces, trunk stiffness and stability margins were calculated by a nonlinear subject-specific EMG-assisted-optimization musculoskeletal model of the trunk. The load elevation and external moment increased muscle activities and trunk stiffness while all stability margins (i.e., buckling loads) decreased. The force coactivity ratio was strongly correlated with the hand-load stability margin (i.e., additional weight in hands to initiate instability; R2 = 0.54) demonstrating the stabilizing role of abdominal muscles. The total trunk stiffness (Pearson's r = 0.96) and the sum of EMGs of back muscles (Pearson's r = 0.65) contributed the most to the T1 stability margin (i.e., additional required load at T1 for instability/buckling). Force coactivity ratio and trunk stiffness can be used as alternative spinal stability metrics.
Collapse
Affiliation(s)
- Farshid Ghezelbash
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| | - Ali Shahvarpour
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - Christian Larivière
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Canada
| | - Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Canada
| |
Collapse
|
10
|
Saito H, Watanabe Y, Kutsuna T, Futohashi T, Kusumoto Y, Chiba H, Kubo M, Takasaki H. Spinal movement variability associated with low back pain: A scoping review. PLoS One 2021; 16:e0252141. [PMID: 34029347 PMCID: PMC8143405 DOI: 10.1371/journal.pone.0252141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To identify suggestions for future research on spinal movement variability (SMV) in individuals with low back pain (LBP) by investigating (1) the methodologies and statistical tools used to assess SMV; (2) characteristics that influence the direction of change in SMV; (3) the methodological quality and potential biases in the published studies; and (4) strategies for optimizing SMV in LBP patients. METHODS We searched literature databases (CENTRAL, Medline, PubMed, Embase, and CINAHL) and comprehensively reviewed the relevant papers up to 5 May 2020. Eligibility criteria included studies investigating SMV in LBP subjects by measuring trunk angle using motion capture devices during voluntary repeated trunk movements in any plane. The Newcastle-Ottawa risk of bias tool was used for data quality assessment. Results were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews. RESULTS Eighteen studies were included: 14 cross-sectional and 4 prospective studies. Seven linear and non-linear statistical tools were used. Common movement tasks included trunk forward bending and backward return, and object lifting. Study results on SMV changes associated with LBP were inconsistent. Two of the three interventional studies reported changes in SMV, one of which was a randomized controlled trial (RCT) involving neuromuscular exercise interventions. Many studies did not account for the potential risk of selection bias in the LBP population. CONCLUSION Designers of future studies should recognize that each of the two types of statistical tools assesses functionally different aspects of SMV. Future studies should also consider dividing participants into subgroups according to LBP characteristics, as three potential subgroups with different SMV characteristics were proposed in our study. Different task demands also produced different effects. We found preliminary evidence in a RCT that neuromuscular exercises could modify SMV, suggesting a rationale for well-designed RCTs involving neuromuscular exercise interventions in future studies.
Collapse
Affiliation(s)
- Hiroki Saito
- Department of Physical Therapy, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Yoshiteru Watanabe
- Department of Physical Therapy, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Toshiki Kutsuna
- Department of Physical Therapy, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Toshihiro Futohashi
- Department of Physical Therapy, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Yasuaki Kusumoto
- Department of Physical Therapy, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Hiroki Chiba
- Department of Physical Therapy, Secomedic Hospital, Funabashi, Chiba, Japan
- Postgraduate School, Saitama Prefectural University, Koshigaya, Saitama, Japan
| | - Masayoshi Kubo
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Hiroshi Takasaki
- Department of Physical Therapy, Saitama Prefectural University, Koshigaya, Saitama, Japan
| |
Collapse
|
11
|
Larivière C, Preuss R, Ludvig D, Henry SM. Is postural control during unstable sitting a proxy measure for determinants associated with lumbar stability? J Biomech 2020; 102:109581. [DOI: 10.1016/j.jbiomech.2019.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 01/29/2023]
|
12
|
Larson DJ, Wang Y, Zwambag DP, Brown SHM. Characterizing Local Dynamic Stability of Lumbar Spine Sub-regions During Repetitive Trunk Flexion-Extension Movements. Front Sports Act Living 2019; 1:48. [PMID: 33344971 PMCID: PMC7739619 DOI: 10.3389/fspor.2019.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Using a technique of tracking intersegmental spine kinematics via skin surface markers, this study aimed to estimate local dynamic spine stability across smaller sub-regions (or segments) of the lumbar spine while also considering the impact of an external pelvic constraint during repetitive movements. Sixteen participants (10 males) performed two trials [Free Motion (FM), Pelvis Constrained (PC)] each consisting of 65 repetitive trunk flexion-extension movements to assess dynamic spine stability using maximum Lyapunov exponents (LyE). First, results indicated that LyE obtained from analysis of 30 repetitive flexion-extension movements did not differ from those obtained from analysis of greater numbers of repetitive movements, which aligns with results from a previous study for the whole lumbar spine. Next, for both males and females, and FM and PC trials, the most caudal region of the lumbar spine behaved the most dynamically stable, while upper lumbar regions behaved the most dynamically unstable. Finally, females demonstrated greater lumbar and intersegmental stability (lower LyE) during PC trials compared to FM, while males demonstrated slightly decreased lumbar and intersegmental stability (higher LyE) during PC trials compared to FM; this resulted in PC trials, but not FM trials, being different between sexes. Altogether, these data show that dynamic stability of lumbar spine sub-regions may be related to the proximity of the motion segment to rigid skeletal structures, and that consideration is needed when deciding whether to constrain the pelvis during analyses of dynamic spine stability.
Collapse
Affiliation(s)
- Dennis J Larson
- Spine and Muscle Biomechanics Lab, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Yunxi Wang
- Spine and Muscle Biomechanics Lab, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Derek P Zwambag
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Stephen H M Brown
- Spine and Muscle Biomechanics Lab, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Beange KHE, Chan ADC, Beaudette SM, Graham RB. Concurrent validity of a wearable IMU for objective assessments of functional movement quality and control of the lumbar spine. J Biomech 2019; 97:109356. [PMID: 31668717 DOI: 10.1016/j.jbiomech.2019.109356] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022]
Abstract
Inertial measurement units (IMUs) are being recognized in clinical and rehabilitation settings for their ability to assess movement-related disorders of the spine for better guidance of treatment-planning and tracking of recovery. This study evaluated the Mbientlab MetaMotionR IMUs, relative to Vicon motion capture equipment in measuring local dynamic stability of the spine (quantified using maximum finite-time Lyapunov exponent; λmax), lumbopelvic coordination (quantified using mean absolute relative phase; MARP), and intersegmental motor variability (quantified using deviation phase; DP) of lumbopelvic segments in 10 participants during 35 cycles of repetitive spine flexion-extension (FE). Intraclass correlations were strong between systems when using both the FE angle time-series and the sum of squares (SS) time-series to measure local dynamic stability (0.807 ≤ICC2,1λmax,FE ≤ 0.919; 0.738 ≤ ICC2,1λmax,SS ≤ 0.868), sagittal-plane lumbopelvic coordination (0.961 ≤ICC2,1MARP ≤ 0.963), and sagittal-plane lumbopelvic variability (0.961 ≤ICC2,1DP ≤ 0.963). It was concluded that the MetaMotionR IMUs can be reliably used for measuring features associated with spine movement quality and motor control during a repetitive FE task. Future work will assess the reliability of sensor placement, performance during multi-directional movements, and ability to discern clinical and healthy populations based on assessment of movement quality and control.
Collapse
Affiliation(s)
- Kristen H E Beange
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada
| | - Adrian D C Chan
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 200 Lees Avenue, Ottawa, Ontario K1N 6N5, Canada; Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada
| | - Shawn M Beaudette
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 200 Lees Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Ryan B Graham
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 200 Lees Avenue, Ottawa, Ontario K1N 6N5, Canada; Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
The Effect of Functional Knee Braces on Muscular Contributions to Joint Rotational Stiffness in Anterior Cruciate Ligament-Deficient and -Reconstructed Patients. J Appl Biomech 2019; 35:344-352. [PMID: 31541064 DOI: 10.1123/jab.2018-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 11/18/2022]
Abstract
Functional knee braces are frequently prescribed by physicians to ameliorate the function of individuals with anterior cruciate ligament (ACL) injuries. These braces have been shown in the literature to potentially enhance knee stability by augmenting muscle activation patterns and the timing of muscle response to perturbations. However, very few techniques are available in the literature to quantify how those modifications in lower-limb muscle activity influence stability of the knee. The aim of the present study was to quantify the effect of an off-the-shelf functional knee brace on muscle contributions to knee joint rotational stiffness in ACL-deficient and ACL-reconstructed patients. Kinematic, electromyography, and kinetic data were incorporated into an electromyography-driven model of the lower extremity to calculate individual and total muscle contributions to knee joint rotational stiffness about the flexion-extension axis, for 4 independent variables: leg condition (contralateral uninjured, unbraced ACL injured, and braced ACL injured); knee flexion (5°-10°, 20°-25°, and 30°-35°); squat stability condition (stable and unstable); and injury status (ACL deficient and ACL reconstructed). Participants had significantly higher (P < .05, η2 = .018) total knee joint rotational stiffness values while wearing the brace compared with the control leg. A 2-way interaction effect between stability and knee flexion (P < .05, η2 = .040) for total joint rotational stiffness was also found.
Collapse
|
15
|
Mavor MP, Graham RB. The effects of protective footwear on spine control and lifting mechanics. APPLIED ERGONOMICS 2019; 76:122-129. [PMID: 30642517 DOI: 10.1016/j.apergo.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/17/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Manual materials handling is often performed in hazardous environments where protective footwear must be worn; however, workers can wear different types of footwear depending on the hazards present. Therefore, the goal of this study was to investigate how three-dimensional lifting mechanics and trunk local dynamic stability are affected by different types of protective footwear (i.e. steel-toed shoes (unlaced boot), steel-toed boots (work boot), and steel-toed boots with a metatarsal guard (MET)). Twelve males and twelve females performed a repetitive lifting task at 10% of their maximum lifting effort, under three randomized footwear conditions. Footwear type influenced ankle range of motion (ROM). The work boot condition reduced ankle sagittal ROM (p = 0.007) and the MET condition reduced ankle ROM in the sagittal (p = 0.004), frontal (p = 0.001) and transverse (p = 0.003) planes. Despite these differences at the ankle, no other changes in participant lifting mechanics were observed.
Collapse
Affiliation(s)
- Matthew P Mavor
- School of Human Kinetics, University of Ottawa, 75 Laurier Ave E, Ottawa, Ontario, K1N 6N5, Canada.
| | - Ryan B Graham
- School of Human Kinetics, University of Ottawa, 75 Laurier Ave E, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
16
|
Differential effects of muscle fatigue on dynamic spine stability: Implications for injury risk. J Electromyogr Kinesiol 2018; 43:209-216. [PMID: 30439631 DOI: 10.1016/j.jelekin.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/12/2018] [Accepted: 11/03/2018] [Indexed: 11/24/2022] Open
Abstract
This study was designed to assess the utility of using a measure of dynamic spine stability in an unfatigued, rested state as a predictor of dynamic spine stability in a challenged, fatigued state. Participants completed three trials (Day 1: Rested, Fatigued; Day 2: Recovery) during which the dynamic stability of the spine was assessed over 30 repeated flexion/extension motions using maximum finite-cycle Lyapunov exponents. Multiple sets of dynamic trunk extensions were performed to fatigue the trunk extensor muscles. Across the sample population, an increase in dynamic spine stability when fatigued was observed, as well as a moderate correlation between the level of dynamic stability when rested and a stabilizing response when fatigued. Further analysis of the data on a person-by-person basis revealed three distinct responses in which participants either stabilized, destabilized or had no change in dynamic spine stability when fatigued. Therefore, the mean response of the sample population did not adequately represent the true, meaningful response of individuals within the population. These results illustrate the importance of considering individualized responses when examining dynamic stability measures, and provide preliminary evidence that suggests that individual injury risk cannot be completely captured by measures taken in an unchallenged, rested state.
Collapse
|
17
|
Gsell KY, Beaudette SM, Capcap IM, Brown SHM. Variations of handheld loads increase the range of motion of the lumbar spine without compromising local dynamic stability during walking. Gait Posture 2018; 66:101-106. [PMID: 30172215 DOI: 10.1016/j.gaitpost.2018.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Walking is often considered a beneficial management strategy for certain populations of low back pain patients. However, little is known about how simple challenges that people often encounter, such as carrying loads in the hands, affect the low back during walking. RESEARCH QUESTION How do variations in hand loading affect arm swing, lumbar spine range of motion (ROM), and lumbar spine local dynamic stability (LDS) during walking? METHODS Sixteen young healthy participants (8 female) performed nine treadmill walking trials, each at 1.25 m/s for 3 consecutive minutes. Conditions manipulated the magnitude of hand loads (unloaded, low, high) and location of hand loads (directly in hands, in bags). Kinematic markers were used to measure sagittal plane arm swing, 3D lumbar spine ROM, and lumbar spine LDS during each trial. RESULTS Arm swing was significantly (p < 0.001) reduced as load increased directly in the hands; however, when held in bags load magnitude had no effect. Further, arm swing was significantly (p < 0.0001) lower when loads were held in bags. Lumbar flexion/extension ROM was greatest with the low load compared to both unloaded (p = 0.012) and high load (p = 0.0717) conditions, and was also greater (p < 0.0001) with loads held directly in the hands compared to loads in bags. Despite these changes in lumbar spine ROM, lumbar spine LDS was not significantly affected by any of the variations in hand loading. SIGNIFICANCE The greater lumbar spine cyclic motion, elicited by low hand loads held directly in the hands during walking, may be beneficial to the health of the low back. No changes in lumbar LDS were found, thereby suggesting that the small, likely beneficial, increases in lumbar spine ROM are well controlled by the motor control system and do not create an increased risk of injury.
Collapse
Affiliation(s)
- Kelsey Y Gsell
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada
| | - Shawn M Beaudette
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada
| | - Ivan M Capcap
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
18
|
Abboud J, Daneau C, Nougarou F, Dugas C, Descarreaux M. Motor adaptations to trunk perturbation: effects of experimental back pain and spinal tissue creep. J Neurophysiol 2018; 120:1591-1601. [PMID: 29975166 DOI: 10.1152/jn.00207.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In complex anatomical systems, such as the trunk, motor control theories suggest that many motor solutions can be implemented to achieve a similar goal. Although reflex mechanisms act as a stabilizer of the spine, how the central nervous system uses trunk redundancy to adapt neuromuscular responses under the influence of external perturbations, such as experimental pain or spinal tissue creep, is still unclear. The aim of this study was to identify and characterize trunk neuromuscular adaptations in response to unexpected trunk perturbations under the influence of spinal tissue creep and experimental back pain. Healthy participants experienced a repetition of sudden external trunk perturbations in two protocols: 1) 15 perturbations before and after a spinal tissue creep protocol and 2) 15 perturbations with and without experimental back pain. Trunk neuromuscular adaptations were measured by using high-density electromyography to record erector spinae muscle activity recruitment patterns and a motion analysis system. Muscle activity reflex attenuation was found across unexpected trunk perturbation trials under the influence of creep and pain. A similar area of muscle activity distribution was observed with or without back pain as well as before and after creep. No change of trunk kinematics was observed. We conclude that although under normal circumstances muscle activity adaptation occurs throughout the same perturbations, a reset of the adaptation process is present when experiencing a new perturbation such as experimental pain or creep. However, participants are still able to attenuate reflex responses under these conditions by using variable recruitment patterns of back muscles. NEW & NOTEWORTHY The present study characterizes, for the first time, trunk motor adaptations with high-density surface electromyography when the spinal system is challenged by a series of unexpected perturbations. We propose that the central nervous system is able to adapt neuromuscular responses by using a variable recruitment pattern of back muscles to maximize the motor performance, even under the influence of pain or when the passive structures of the spine are altered.
Collapse
Affiliation(s)
- Jacques Abboud
- Department of Anatomy, Université du Québec à Trois-Rivières , Trois-Rivières, Quebec , Canada
| | - Catherine Daneau
- Department of Human Kinetics, Université du Québec à Trois-Rivières , Trois-Rivières, Quebec , Canada
| | - François Nougarou
- Department of Electrical Engineering, Université du Québec à Trois-Rivières , Trois-Rivières, Quebec , Canada
| | - Claude Dugas
- Department of Human Kinetics, Université du Québec à Trois-Rivières , Trois-Rivières, Quebec , Canada
| | - Martin Descarreaux
- Department of Human Kinetics, Université du Québec à Trois-Rivières , Trois-Rivières, Quebec , Canada
| |
Collapse
|
19
|
Ross GB, Sheahan PJ, Mahoney B, Gurd BJ, Hodges PW, Graham RB. Pain catastrophizing moderates changes in spinal control in response to noxiously induced low back pain. J Biomech 2017; 58:64-70. [DOI: 10.1016/j.jbiomech.2017.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
|
20
|
Abboud J, Lardon A, Boivin F, Dugas C, Descarreaux M. Effects of Muscle Fatigue, Creep, and Musculoskeletal Pain on Neuromuscular Responses to Unexpected Perturbation of the Trunk: A Systematic Review. Front Hum Neurosci 2017; 10:667. [PMID: 28101013 PMCID: PMC5209383 DOI: 10.3389/fnhum.2016.00667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Introduction: Trunk neuromuscular responses have been shown to adapt under the influence of muscle fatigue, as well as spinal tissue creep or even with the presence of low back pain (LBP). Despite a large number of studies exploring how these external perturbations affect the spinal stability, characteristics of such adaptations remains unclear. Aim: The purpose of this systematic review was to assess the quality of evidence of studies investigating trunk neuromuscular responses to unexpected trunk perturbation. More specifically, the targeted neuromuscular responses were trunk muscle activity reflex and trunk kinematics under the influence of muscle fatigue, spinal creep, and musculoskeletal pain. Methods: A research of the literature was conducted in Pubmed, Embase, and Sport-Discus databases using terms related to trunk neuromuscular reflex responses, measured by electromyography (baseline activity, reflex latency, and reflex amplitude) and/or trunk kinematic, in context of unexpected external perturbation. Moreover, independent variables must be either trunk muscle fatigue or spinal tissue creep or LBP. All included articles were scored for their electromyography methodology based on the “Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM)” and the “International Society of Electrophysiology and Kinesiology (ISEK)” recommendations whereas overall quality of articles was scored using a specific quality checklist modified from the Quality Index. Meta-analysis was performed on reflex latency variable. Results: A final set of 29 articles underwent quality assessments. The mean quality score was 79%. No effect of muscle fatigue on erector spinae reflex latency following an unexpected perturbation, nor any other distinctive effects was found for back muscle fatigue and reflex parameters. As for spinal tissue creep effects, no alteration was found for any of the trunk reflex variables. Finally, the meta-analysis revealed an increased erector spinae reflex latency in patients with chronic LBP in comparison with healthy controls following an unexpected trunk perturbation. Conclusion: The literature provides some evidence with regard to trunk adaptions in a context of spinal instability. However, most of the evidence was inconclusive due to a high methodological heterogeneity between the studies.
Collapse
Affiliation(s)
- Jacques Abboud
- Département D'anatomie, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| | - Arnaud Lardon
- Pôle Recherche Clinique Chiropratique, Institut Franco-Européen de ChiropraxieIvry-Sur-Seine, France; Département des Sciences de L'activité Physique, Université du Québec à Trois-RivièresTrois-Rivières, QC, Canada
| | - Frédéric Boivin
- Département des Sciences de L'activité Physique, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| | - Claude Dugas
- Département des Sciences de L'activité Physique, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| | - Martin Descarreaux
- Département des Sciences de L'activité Physique, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| |
Collapse
|
21
|
Chehrehrazi M, Sanjari MA, Mokhtarinia HR, Jamshidi AA, Maroufi N, Parnianpour M. Goal equivalent manifold analysis of task performance in non-specific LBP and healthy subjects during repetitive trunk movement: Effect of load, velocity, symmetry. Hum Mov Sci 2016; 51:72-81. [PMID: 27915152 DOI: 10.1016/j.humov.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022]
Abstract
Motor abundance allows reliability of motor performance despite its variability. The nature of this variability provides important information on the flexibility of control strategies. This feature of control may be affected by low back pain (LPB) and trunk flexion/extension conditions. Goal equivalent manifold (GEM) analysis was used to quantify the ability to exploit motor abundance during repeated trunk flexion/extension in healthy individuals and people with chronic non-specific LBP (CNSLBP). Kinematic data were collected from 22 healthy volunteers and 22 CNSLBP patients during metronomically timed, repeated trunk flexion/extension in three conditions of symmetry, velocity, and loading; each at two levels. A goal function for the task was defined as maintaining a constant movement time at each cycle. Given the GEM, flexibility index and performance index were calculated respectively as amounts of goal-equivalent variability and the ratio of goal-equivalent to non-goal-equivalent variability. CNSLBP group was as similar as healthy individuals in both flexibility index (p=0.41) and performance index (p=0.24). Performance index was higher in asymmetric (p<0.001), high velocity (p<0.001), and loaded (p=0.006) conditions. Performance and flexibility in using motor abundance were influenced by repeated trunk flexion/extension conditions. However, these measures were not significantly affected by CNSLBP.
Collapse
Affiliation(s)
- Mahshid Chehrehrazi
- Department of Physical Therapy, Faculty of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Sanjari
- Biomechanics Lab, Rehabilitation Research Center, and Faculty of Rehabilitation, Department of Rehabilitation Basic Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Mokhtarinia
- Department of Ergonomics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Ali Ashraf Jamshidi
- Department of Physical Therapy, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran.
| | - Nader Maroufi
- Department of Physical Therapy, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamad Parnianpour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
22
|
Spencer S, Wolf A, Rushton A. Spinal-Exercise Prescription in Sport: Classifying Physical Training and Rehabilitation by Intention and Outcome. J Athl Train 2016; 51:613-628. [PMID: 27661792 DOI: 10.4085/1062-6050-51.10.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Identification of strategies to prevent spinal injury, optimize rehabilitation, and enhance performance is a priority for practitioners. Different exercises produce different effects on neuromuscular performance. Clarity of the purpose of a prescribed exercise is central to a successful outcome. Spinal exercises need to be classified according to the objective of the exercise and planned physical outcome. OBJECTIVE To define the modifiable spinal abilities that underpin optimal function during skilled athletic performance, clarify the effect of spinal pain and pathologic conditions, and classify spinal exercises according to the objective of the exercise and intended physical outcomes to inform training and rehabilitation. DESIGN Qualitative study. DATA COLLECTION AND ANALYSIS We conducted a qualitative consensus method of 4 iterative phases. An exploratory panel carried out an extended review of the English-language literature using CINAHL, EMBASE, MEDLINE, and PubMed to identify key themes and subthemes to inform the definitions of exercise categories, physical abilities, and physical outcomes. An expert project group reviewed panel findings. A draft classification was discussed with physiotherapists (n = 49) and international experts. Lead physiotherapy and strength and conditioning teams (n = 17) reviewed a revised classification. Consensus was defined as unanimous agreement. RESULTS After the literature review and subsequent analysis, we defined spinal abilities in 4 categories: mobility, motor control, work capacity, and strength. Exercises were subclassified by functionality as nonfunctional or functional and by spinal displacement as either static (neutral spinal posture with no segmental displacement) or dynamic (dynamic segmental movement). The proposed terminology and classification support commonality of language for practitioners. CONCLUSIONS The spinal-exercise classification will support clinical reasoning through a framework of spinal-exercise objectives that clearly define the nature of the exercise prescription required to deliver intended physical outcomes.
Collapse
Affiliation(s)
- Simon Spencer
- The English Institute of Sport, The Manchester Institute of Health and Performance, Manchester, United Kingdom
| | - Alex Wolf
- The English Institute of Sport, The Manchester Institute of Health and Performance, Manchester, United Kingdom.,Department of Surgery and Cancer, Imperial College, London, Charing Cross Hospital, United Kingdom
| | | |
Collapse
|
23
|
Worden TA, Beaudette SM, Brown SHM, Vallis LA. Estimating Gait Stability: Asymmetrical Loading Effects Measured Using Margin of Stability and Local Dynamic Stability. J Mot Behav 2016; 48:455-67. [PMID: 27253774 DOI: 10.1080/00222895.2015.1134433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Changes to intersegmental locomotor control patterns may affect body stability. Our study aimed to (a) characterize upper body dynamic stability in response to the unilateral addition of mass to the lower extremity and (b) evaluate the efficacy of 2 different stability measures commonly used in the literature to detect resulting symmetrical step pattern modifications across the weighted segments (spatial) and between epochs of the gait cycle (temporal). Young adults walked on a treadmill while unloaded or with weights applied unilaterally to their foot, shank, or thigh. Both margin of stability and local dynamic stability (LDS) estimates detected similar trends of distal segment weighting resulting in more unstable upper body movement compared to proximal weighting; however only LDS detected anteroposterior changes in upper body stability over time.
Collapse
Affiliation(s)
- Timothy A Worden
- a Department of Human Health and Nutritional Sciences , University of Guelph , Ontario , Canada
| | - Shawn M Beaudette
- a Department of Human Health and Nutritional Sciences , University of Guelph , Ontario , Canada
| | - Stephen H M Brown
- a Department of Human Health and Nutritional Sciences , University of Guelph , Ontario , Canada
| | - Lori Ann Vallis
- a Department of Human Health and Nutritional Sciences , University of Guelph , Ontario , Canada
| |
Collapse
|
24
|
Low back skin sensitivity has minimal impact on active lumbar spine proprioception and stability in healthy adults. Exp Brain Res 2016; 234:2215-26. [PMID: 27010722 DOI: 10.1007/s00221-016-4625-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/10/2016] [Indexed: 12/18/2022]
Abstract
The purpose of the current work was to (1) determine whether low back cutaneous sensitivity could be reduced through the use of a topical lidocaine-prilocaine anesthetic (EMLA(®)) to mirror reductions reported in chronic lower back pain (CLBP) patients, as well as to (2) identify whether reductions in cutaneous sensitivity resulted in decreased lumbar spine proprioception, neuromuscular control and dynamic stability. Twenty-eight healthy participants were divided equally into matched EMLA and PLACEBO treatment groups. Groups completed cutaneous minimum monofilament and two-point discrimination (TPD) threshold tests, as well as tests of sagittal and axial lumbar spine active repositioning error, seated balance and repeated lifting dynamic stability. These tests were administered both before and after the application of an EMLA or PLACEBO treatment. Results show that low back minimum monofilament and TPD thresholds were significantly increased within the EMLA group. Skin sensitivity remained unchanged in the PLACEBO group. In the EMLA group, decreases in low back cutaneous sensitivity had minimal effect on low back proprioception (active sagittal and axial repositioning) and dynamic stability (seated balance and repeated lifting). These findings demonstrate that treating the skin of the low back with an EMLA anesthetic can effectively decrease the cutaneous sensitivity of low back region. Further, these decreases in peripheral cutaneous sensitivity are similar in magnitude to those reported in CLBP patients. Within this healthy population, decreased cutaneous sensitivity of the low back region has minimal influence on active lumbar spine proprioception, neuromuscular control and dynamic stability.
Collapse
|
25
|
Mavor MP, Graham RB. Exploring the relationship between local and global dynamic trunk stabilities during repetitive lifting tasks. J Biomech 2015; 48:3955-60. [DOI: 10.1016/j.jbiomech.2015.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
|
26
|
Beaudette SM, Worden TA, Kamphuis M, Ann Vallis L, Brown SHM. Local Dynamic Joint Stability During Human Treadmill Walking in Response to Lower Limb Segmental Loading Perturbations. J Biomech Eng 2015; 137:2382284. [DOI: 10.1115/1.4030944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 11/08/2022]
Abstract
Our purpose was to quantify changes in local dynamic stability (LDS) of the lumbar spine, hip, knee, and ankle in response to changes in lower limb segment mass, as well as to quantify temporal adaptations to segment loading during treadmill walking. Results demonstrate that increased mass distal to a joint yields either the maintenance of, or increased stabilization of, that particular joint relative to the unloaded condition. Increased mass proximal to a particular joint resulted in joint destabilization. The hip and ankle LDS were observed to change temporally, independent of segment loading condition, suggesting adaptation to walking on a treadmill interface.
Collapse
Affiliation(s)
- Shawn M. Beaudette
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada e-mail:
| | - Timothy A. Worden
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada e-mail:
| | - Megan Kamphuis
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada e-mail:
| | - Lori Ann Vallis
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada e-mail:
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada e-mail:
| |
Collapse
|
27
|
Gsell KY, Beaudette SM, Graham RB, Brown SHM. The effect of different ranges of motion on local dynamic stability of the elbow during unloaded repetitive flexion-extension movements. Hum Mov Sci 2015; 42:193-202. [PMID: 26048713 DOI: 10.1016/j.humov.2015.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/29/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Local dynamic stability (LDS) of movement is controlled primarily by active muscles, and is known to be influenced by factors such as movement speed and inertial load. Other factors such as muscle length, the length of the target trajectory, and the resistance of passive tissues through ranges of motion (ROM) may also influence LDS. This study was designed to examine the effect of ROM, which impacts each of the aforementioned factors, on LDS of the elbow. 16 participants performed 30 unloaded, repetitive, flexion-extension movements of the elbow with varying (1) angular displacement magnitudes: 40° and 80°; (2) locations of ROM: mid-range, flexion end-range, extension end-range; and (3) rotated positions of the forearm: pronated and supinated. LDS was calculated using a finite time Lyapunov analysis of angular elbow flexion-extension kinematic data. EMG-based muscle activation and co-contraction data were also examined for possible mechanisms of stabilization. Results showed no changes in LDS with any movement condition; however, there were significant effects on muscle activation with ROM location and forearm rotated position. This suggests that a consistent level of LDS of the elbow through varying ROMs is maintained, at least in part, by the active control of the elbow flexor and extensor muscles.
Collapse
Affiliation(s)
- Kelsey Y Gsell
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shawn M Beaudette
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ryan B Graham
- School of Physical & Health Education, Nipissing University, North Bay, ON P1B 8L7, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
28
|
Howarth SJ, Graham RB. Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements. J Biomech 2015; 48:1219-23. [PMID: 25680296 DOI: 10.1016/j.jbiomech.2015.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 11/18/2022]
Abstract
Application of non-linear dynamics analyses to study human movement has increased recently, which necessitates an understanding of how dependent measures may be influenced by experimental design and setup. Quantifying local dynamic stability for a multi-articulated structure such as the spine presents the possibility for estimates to be influenced by positioning of kinematic sensors used to measure spine angular kinematics. Oftentimes researchers will also choose to constrain the spine's movement by physically restraining the pelvis and/or using targets to control movement endpoints. Ten healthy participants were recruited, and asked to perform separate trials of 35 consecutive cycles of spine flexion under both constrained and unconstrained conditions. Electromagnetic sensors that measure three-dimensional angular orientations were positioned over the pelvis and the spinous processes of L3, L1, and T11. Using the pelvic sensor as a reference, each sensor location on the spine was used to obtain a different representation of the three-dimensional spine angular kinematics. Local dynamic stability of each kinematic time-series was determined by calculating the maximum finite-time Lyapunov exponent (λmax). Estimates for λmax were significantly lower (i.e. dynamically more stable) for spine kinematic data obtained from the L3 sensor than those obtained from kinematic data using either the L1 or T11 sensors. Likewise, λmax was lower when the movement was constrained. These results emphasize the importance of proper placement of instrumentation for quantifying local dynamic stability of spine kinematics and are especially relevant for repeated measures designs where data are obtained from the same individual on multiple days.
Collapse
Affiliation(s)
- Samuel J Howarth
- Department of Graduate Education and Research Programs, Canadian Memorial Chiropractic College, Toronto, ON, Canada.
| | - Ryan B Graham
- School of Physical Health and Education, Nipissing University, North Bay, ON, Canada
| |
Collapse
|
29
|
The Effects of Experimentally Induced Low Back Pain on Spine Rotational Stiffness and Local Dynamic Stability. Ann Biomed Eng 2015; 43:2120-30. [DOI: 10.1007/s10439-015-1268-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
30
|
Holmes MWR, Tat J, Keir PJ. Neuromechanical control of the forearm muscles during gripping with sudden flexion and extension wrist perturbations. Comput Methods Biomech Biomed Engin 2014; 18:1826-34. [PMID: 25373932 DOI: 10.1080/10255842.2014.976811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate how gripping modulates forearm muscle co-contraction prior to and during sudden wrist perturbations. Ten males performed a sub-maximal gripping task (no grip, 5% and 10% of maximum) while a perturbation forced wrist flexion or extension. Wrist joint angles and activity from 11 muscles were used to determine forearm co-contraction and muscle contributions to wrist joint stiffness. Co-contraction increased in all pairs as grip force increased (from no grip to 10% grip), corresponding to a 36% increase in overall wrist joint stiffness. Inclusion of individual muscle contributions to wrist joint stiffness enhanced the understanding of forearm co-contraction. The extensor carpi radialis longus (ECRL) and brevis had the largest stiffness contributions (34.5 ± 1.3% and 20.5 ± 2.3%, respectively), yet muscle pairs including ECRL produced the lowest co-contraction. The muscles contributing most to wrist stiffness were consistent across conditions (ECRL for extensors; Flexor Digitorum Superficialis for flexors), suggesting enhanced contributions rather than muscular redistribution. This work provides investigation of the neuromuscular response to wrist perturbations and gripping demands by considering both co-contraction and muscle contributions to joint stiffness. Individual muscle stiffness contributions can be used to enhance the understanding of forearm muscle control during complex tasks.
Collapse
Affiliation(s)
- Michael W R Holmes
- a Faculty of Health Sciences, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa , ON , Canada L1H 7K4
| | | | | |
Collapse
|
31
|
Graham RB, Brown SHM. Local Dynamic Stability of Spine Muscle Activation and Stiffness Patterns During Repetitive Lifting. J Biomech Eng 2014; 136:121006. [DOI: 10.1115/1.4028818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/16/2014] [Indexed: 11/08/2022]
Abstract
To facilitate stable trunk kinematics, humans must generate appropriate motor patterns to effectively control muscle force and stiffness and respond to biomechanical perturbations and/or neuromuscular control errors. Thus, it is important to understand physiological variables such as muscle force and stiffness, and how these relate to the downstream production of stable spine and trunk movements. This study was designed to assess the local dynamic stability of spine muscle activation and rotational stiffness patterns using Lyapunov analyses, and relationships to the local dynamic stability of resulting spine kinematics, during repetitive lifting and lowering at varying combinations of lifting load and rate. With an increase in the load lifted at a constant rate there was a trend for decreased local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness; although the only significant change was for the full state space muscle activation stability (p < 0.05). With an increase in lifting rate with a constant load there was a significant decrease in the local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness (p ≤ 0.001 for all measures). These novel findings suggest that the stability of motor inputs and the muscular contributions to spine rotational stiffness can be altered by external task demands (load and lifting rate), and therefore are important variables to consider when assessing the stability of the resulting kinematics.
Collapse
Affiliation(s)
- Ryan B. Graham
- School of Physical and Health Education, Nipissing University, 100 College Drive, Box 5002, North Bay, ON P1B 8L7, Canada e-mail:
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada e-mail:
| |
Collapse
|
32
|
A biomechanical research of growth control of spine by shape memory alloy staples. BIOMED RESEARCH INTERNATIONAL 2014; 2013:384894. [PMID: 24350265 PMCID: PMC3848084 DOI: 10.1155/2013/384894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022]
Abstract
Shape memory alloy (SMA) staples in nickel titanium with shape memory effect are effective for spinal growth control. This study was designed to evaluate the biomechanical properties of the staples and observe the stability of the fixed segments spine after the staples were implanted. According to the vertical distance of the vertebrae, SMA staples of 5, 6.5, and 8 mm were designed. The recovery stress of 24 SMA staples in three groups was measured. The pullout strength of SMA staples and stainless steel staples in each functional spinal unit was measured. Each of the six fresh specimens was divided into three conditions: normal, single staple, and double staples. Under each condition, the angle and torque of spinal movements in six directions were tested. Results show that the differences in recovery stress and maximum pullout strength between groups were statistically significant. In left and right bending, flextion, and extention, the stability of spine was decreased in conditions of single staple and double staples. Biomechanical function of SMA staples was superior to stainless steel staple. SMA staples have the function of hemiepiphyseal compression and kyphosis and scoliosis model of thoracic vertebrae in goat could be successfully created by the fusionless technique.
Collapse
|
33
|
Muscle Contributions to Elbow Joint Rotational Stiffness in Preparation for Sudden External Arm Perturbations. J Appl Biomech 2014; 30:282-9. [DOI: 10.1123/jab.2013-0135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (P< .001). Brachioradialis had the largest change in contribution while standing (no load, 18.5%; solid, 23.8%; fluid, 26.3%). Across trials, the greatest contributions were brachialis (30.4 ± 1.9%) and brachioradialis (21.7 ± 2.2%). Contributions from the forearm muscles and triceps were 5.5 ± 0.6% and 9.2 ± 1.9%, respectively. Contributions increased at time points closer to the perturbation (baseline to anticipatory), indicating increased neuromuscular response to resist rotation. This study quantified muscle contributions that resist elbow perturbations, found that forearm muscles contribute marginally and showed that orientation and preload should be considered when evaluating elbow joint stiffness and safety.
Collapse
|
34
|
Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain. J Biomech 2014; 47:1459-64. [DOI: 10.1016/j.jbiomech.2014.01.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 11/19/2022]
|
35
|
Beaudette SM, Graham RB, Brown SH. The effect of unstable loading versus unstable support conditions on spine rotational stiffness and spine stability during repetitive lifting. J Biomech 2014; 47:491-6. [DOI: 10.1016/j.jbiomech.2013.10.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
|
36
|
Hendershot BD, Nussbaum MA. Altered flexion-relaxation responses exist during asymmetric trunk flexion movements among persons with unilateral lower-limb amputation. J Electromyogr Kinesiol 2013; 24:120-5. [PMID: 24332679 DOI: 10.1016/j.jelekin.2013.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 11/18/2022] Open
Abstract
Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion-extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference ("DIFF") between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population.
Collapse
Affiliation(s)
- Brad D Hendershot
- Virginia Tech - Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maury A Nussbaum
- Virginia Tech - Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
Edgett BA, Foster WS, Hankinson PB, Simpson CA, Little JP, Graham RB, Gurd BJ. Dissociation of increases in PGC-1α and its regulators from exercise intensity and muscle activation following acute exercise. PLoS One 2013; 8:e71623. [PMID: 23951207 PMCID: PMC3741131 DOI: 10.1371/journal.pone.0071623] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Abstract
Muscle activation as well as changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following high-intensity interval exercise (HIIE) were examined in young healthy men (n = 8; age, 21.9±2.2 yrs; VO2peak, 53.1±6.4 ml/min/kg; peak work rate, 317±23.5 watts). On each of 3 visits HIIE was performed on a cycle ergometer at a target intensity of 73, 100, or 133% of peak work rate. Muscle biopsies were taken at rest and three hours after each exercise condition. Total work was not different between conditions (∼730 kJ) while average power output (73%, 237±21; 100%, 323±26; 133%, 384±35 watts) and EMG derived muscle activation (73%, 1262±605; 100%, 2089±737; 133%, 3029±1206 total integrated EMG per interval) increased in an intensity dependent fashion. PGC-1α mRNA was elevated after all three conditions (p<0.05), with a greater increase observed following the 100% condition (∼9 fold, p<0.05) compared to both the 73 and 133% conditions (∼4 fold). When expressed relative to muscle activation, the increase in PGC-1α mRNA for the 133% condition was less than that for the 73 and 100% conditions (p<0.05). SIRT1 mRNA was also elevated after all three conditions (∼1.4 fold, p<0.05), with no difference between conditions. These findings suggest that intensity-dependent increases in PGC-1α mRNA following submaximal exercise are largely due to increases in muscle recruitment. As well, the blunted response of PGC-1α mRNA expression following supramaximal exercise may indicate that signalling mediated activation of PGC-1α may also be blunted. We also indentify that increases in PDK4, SIRT1, and RIP140 mRNA following acute exercise are dissociated from exercise intensity and muscle activation, while increases in EGR1 are augmented with supramaximal HIIE (p<0.05).
Collapse
Affiliation(s)
- Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - William S. Foster
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Paul B. Hankinson
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Craig A. Simpson
- Department of Emergency Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan B. Graham
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
- School of Physical and Health Education, Nipissing University, North Bay, Ontario, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Cashaback JGA, Potvin JR, Pierrynowski MR. On the derivation of a tensor to calculate six degree-of-freedom, musculotendon joint stiffness: implications for stability and impedance analyses. J Biomech 2013; 46:2741-4. [PMID: 24028892 DOI: 10.1016/j.jbiomech.2013.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/11/2013] [Accepted: 07/14/2013] [Indexed: 11/26/2022]
Abstract
Major joints, such as the knee, shoulder, and spine, can buckle along the translational degrees-of-freedom (DoF), causing injury to ligaments and other passive tissues. Despite this, stability and impedance analyses have focused primarily on the rotational DoF. As such, mathematical models quantifying musculotendon translational stiffnesses remain limited and, to our knowledge, there are no published works that explicitly describes the interactions between DoF. Using an energy approach, we derived a six DoF stiffness tensor and provided the necessary equations needed to quantify the musculotendon stiffness of any joint. Using a knee model, we then compared the derived stiffness tensor against two commonly used measures: one that excludes translational DoF and another that excludes interactions between DoF. We found that both of these measures had large over-estimations of stiffness, particularly for the rotational DoF, compared to our derived tensor. These findings indicate that previous analyses may have found rotational DoF to be stable when they were unstable.
Collapse
Affiliation(s)
- Joshua G A Cashaback
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 2K1.
| | | | | |
Collapse
|
39
|
Viscoelastic creep induced by repetitive spine flexion and its relationship to dynamic spine stability. J Electromyogr Kinesiol 2013; 23:794-800. [DOI: 10.1016/j.jelekin.2013.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 11/17/2022] Open
|
40
|
Toosizadeh N, Bazrgari B, Hendershot B, Muslim K, Nussbaum MA, Madigan ML. Disturbance and recovery of trunk mechanical and neuromuscular behaviours following repetitive lifting: influences of flexion angle and lift rate on creep-induced effects. ERGONOMICS 2013; 56:954-963. [PMID: 23586596 DOI: 10.1080/00140139.2013.785601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED Repetitive lifting is associated with an increased risk of occupational low back disorders, yet potential adverse effects of such exposure on trunk mechanical and neuromuscular behaviours were not well described. Here, 12 participants, gender balanced, completed 40 min of repetitive lifting in all combinations of three flexion angles (33, 66, and 100% of each participant's full flexion angle) and two lift rates (2 and 4 lifts/min). Trunk behaviours were obtained pre- and post-exposure and during recovery using sudden perturbations. Intrinsic trunk stiffness and reflexive responses were compromised after lifting exposures, with larger decreases in stiffness and reflexive force caused by larger flexion angles, which also delayed reflexive responses. Consistent effects of lift rate were not found. Except for reflex delay no measures returned to pre-exposure values after 20 min of recovery. Simultaneous changes in both trunk stiffness and neuromuscular behaviours may impose an increased risk of trunk instability and low back injury. PRACTITIONER SUMMARY An elevated risk of low back disorders is attributed to repetitive lifting. Here, the effects of flexion angle and lift rate on trunk mechanical and neuromuscular behaviours were investigated. Increasing flexion angle had adverse effects on these outcomes, although lift rate had inconsistent effects and recovery time was more than 20 min.
Collapse
Affiliation(s)
- Nima Toosizadeh
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
41
|
Creep Deformation of the Human Trunk in Response to Prolonged and Repetitive Flexion: Measuring and Modeling the Effect of External Moment and Flexion Rate. Ann Biomed Eng 2013; 41:1150-61. [DOI: 10.1007/s10439-013-0797-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/16/2013] [Indexed: 11/26/2022]
|