1
|
Todorov LG, Sivaguru M, Krambeck AE, Lee MS, Lieske JC, Fouke BW. GeoBioMed perspectives on kidney stone recurrence from the reactive surface area of SWL-derived particles. Sci Rep 2022; 12:18371. [PMID: 36319741 PMCID: PMC9626463 DOI: 10.1038/s41598-022-23331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/29/2022] [Indexed: 11/18/2022] Open
Abstract
Shock wave lithotripsy (SWL) is an effective and commonly applied clinical treatment for human kidney stones. Yet the success of SWL is counterbalanced by the risk of retained fragments causing recurrent stone formation, which may require retreatment. This study has applied GeoBioMed experimental and analytical approaches to determine the size frequency distribution, fracture patterns, and reactive surface area of SWL-derived particles within the context of their original crystal growth structure (crystalline architecture) as revealed by confocal autofluorescence (CAF) and super-resolution autofluorescence (SRAF) microscopy. Multiple calcium oxalate (CaOx) stones were removed from a Mayo Clinic patient using standard percutaneous nephrolithotomy (PCNL) and shock pulse lithotripsy (SPL). This produced approximately 4-12 mm-diameter PCNL-derived fragments that were experimentally treated ex vivo with SWL to form hundreds of smaller particles. Fractures propagated through the crystalline architecture of PCNL-derived fragments in a variety of geometric orientations to form rectangular, pointed, concentrically spalled, and irregular SWL-derived particles. Size frequency distributions ranged from fine silt (4-8 μm) to very fine pebbles (2-4 mm), according to the Wentworth grain size scale, with a mean size of fine sand (125-250 μm). Importantly, these SWL-derived particles are smaller than the 3-4 mm-diameter detection limit of clinical computed tomography (CT) techniques and can be retained on internal kidney membrane surfaces. This creates clinically undetectable crystallization seed points with extremely high reactive surface areas, which dramatically enhance the multiple events of crystallization and dissolution (diagenetic phase transitions) that may lead to the high rates of CaOx kidney stone recurrence after SWL treatment.
Collapse
Affiliation(s)
- Lauren G. Todorov
- grid.35403.310000 0004 1936 9991Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Mayandi Sivaguru
- grid.35403.310000 0004 1936 9991Cytometry and Microscopy to Omics Facility, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Amy E. Krambeck
- grid.66875.3a0000 0004 0459 167XDepartment of Urology, Mayo Clinic, Rochester, MN USA ,grid.16753.360000 0001 2299 3507Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Matthew S. Lee
- grid.16753.360000 0001 2299 3507Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - John C. Lieske
- grid.66875.3a0000 0004 0459 167XDivision of Nephrology and Hypertension, Mayo Clinic, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Bruce W. Fouke
- grid.35403.310000 0004 1936 9991Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
2
|
Xiang G, Ma X, Liang C, Yu H, Liao D, Sankin G, Cao S, Wang K, Zhong P. Variations of stress field and stone fracture produced at different lateral locations in a shockwave lithotripter field. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:1013. [PMID: 34470261 PMCID: PMC8357445 DOI: 10.1121/10.0005823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
During clinical procedures, the lithotripter shock wave (LSW) that is incident on the stone and resultant stress field is often asymmetric due to the respiratory motion of the patient. The variations of the LSW-stone interaction and associated fracture pattern were investigated by photoelastic imaging, phantom experiments, and three-dimensional fluid-solid interaction modeling at different lateral locations in a lithotripter field. In contrast to a T-shaped fracture pattern often observed in the posterior region of the disk-shaped stone under symmetric loading, the fracture pattern gradually transitioned to a tilted L-shape under asymmetric loading conditions. Moreover, the model simulations revealed the generation of surface acoustic waves (SAWs), i.e., a leaky Rayleigh wave on the anterior boundary and Scholte wave on the posterior boundary of the stone. The propagation of SAWs on the stone boundary is accompanied by a progressive transition of the LSW reflection pattern from regular to von Neumann and to weak von Neumann reflection near the glancing incidence and, concomitantly, the development and growth of a Mach stem, swirling around the stone boundary. The maximum tensile stress and stress integral were produced by SAWs on the stone boundary under asymmetric loading conditions, which drove the initiation and extension of surface cracks into the bulk of the stone that is confirmed by micro-computed tomography analysis.
Collapse
Affiliation(s)
- Gaoming Xiang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Xiaojian Ma
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Cosima Liang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Hongyang Yu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Defei Liao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Georgy Sankin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Shunxiang Cao
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Kevin Wang
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
3
|
Cao S, Zhang Y, Liao D, Zhong P, Wang KG. Shock-Induced Damage and Dynamic Fracture in Cylindrical Bodies Submerged in Liquid. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2019; 169:55-71. [PMID: 31423024 PMCID: PMC6697132 DOI: 10.1016/j.ijsolstr.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the response of solid materials to shock loading is important for mitigating shock-induced damages and failures, as well as advancing the beneficial use of shock waves for material modifications. In this paper, we consider a representative brittle material, BegoStone, in the form of cylindrical bodies and submerged in water. We present a computational study on the causal relationship between the prescribed shock load and the resulting elastic waves and damage in the solid material. A recently developed three-dimensional computational framework, FIVER, is employed, which couples a finite volume compressible fluid solver with a finite element structural dynamics solver through the construction and solution of local, one-dimensional fluid-solid Riemann problems. The material damage and fracture are modeled and simulated using a continuum damage mechanics model and an element erosion method. The computational model is validated in the context of shock wave lithotripsy and the results are compared with experimental data. We first show that after calibrating the growth rate of microscopic damage and the threshold for macroscopic fracture, the computational framework is capable of capturing the location and shape of the shock-induced fracture observed in a laboratory experiment. Next, we introduce a new phenomenological model of shock waveform, and present a numerical parametric study on the effects of a single shock load, in which the shock waveform, magnitude, and the size of the target material are varied. In particular, we vary the waveform gradually from one that features non-monotonic decay with a tensile phase to one that exhibits monotonic decay without a tensile phase. The result suggests that when the length of the shock pulse is comparable to that of the target material, the former waveform may induce much more significant damage than the latter one, even if the two share the same magnitude, duration, and acoustic energy.
Collapse
Affiliation(s)
- S. Cao
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Y. Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 90271, United States
| | - D. Liao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 90271, United States
| | - P. Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 90271, United States
| | - K. G. Wang
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
- Corresponding author (K. G. Wang)
| |
Collapse
|
4
|
Xing Y, Chen TT, Simmons WN, Sankin G, Cocks FH, Lipkin ME, Preminger GM, Zhong P. Comparison of Broad vs Narrow Focal Width Lithotripter Fields. J Endourol 2017; 31:502-509. [PMID: 28340536 DOI: 10.1089/end.2016.0560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To investigate the impact of lithotripter focal width on stone fragmentation. MATERIALS AND METHODS A modified reflector was used to reduce -6 dB beam size of the HM3 lithotripter, while increasing concomitantly peak pressure. Fragmentation in vitro was assessed with modified and original reflectors using BegoStone phantoms. A membrane holder was used to mimic lithotripsy in vivo, and a matrix holder was used to assess variations of fragmentation power in the focal plane of the lithotripter field. Stone fragmentation in vivo produced by the two reflectors was further compared in a swine model. RESULTS Stone fragmentation in vitro after 500 (or 2000) shocks was ∼60% (or ∼82%) vs ∼40% (or ∼75%) with original and modified reflector, respectively (p ≤ 0.0016). Fragmentation power with the modified reflector was the highest on the lithotripter axis, but dropped rapidly in the lateral direction and became insignificant at radial distances >6.0 mm. Stone fragmentation with the original reflector was lower along the lithotripter axis, but fragmentation power decayed slowly in lateral direction, with appreciable fragmentation produced at 6.0 mm. Stone fragmentation efficiency in vivo after 500 (or 2000) shocks was ∼70% (or ∼90%) vs ∼45% (or ∼80%) with original and modified reflector, respectively (p ≤ 0.04). CONCLUSIONS A lithotripter field with broad beam size yields superior stone comminution when compared with narrow beam size under comparable effective acoustic pulse energy both in vivo and in vitro. These findings may facilitate future improvements in lithotripter design to maximize comminution efficiency while minimizing tissue injury.
Collapse
Affiliation(s)
- Yifei Xing
- 1 Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina
| | - Tony T Chen
- 2 School of Medicine, Duke University , Durham, North Carolina
| | - Walter N Simmons
- 1 Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina
| | - Georgy Sankin
- 1 Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina
| | - Franklin H Cocks
- 1 Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina
| | - Michael E Lipkin
- 3 Comprehensive Kidney Stone Center/Urologic Surgery, Duke University , Durham, North Carolina
| | - Glenn M Preminger
- 3 Comprehensive Kidney Stone Center/Urologic Surgery, Duke University , Durham, North Carolina
| | - Pei Zhong
- 1 Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina.,3 Comprehensive Kidney Stone Center/Urologic Surgery, Duke University , Durham, North Carolina
| |
Collapse
|
5
|
Zhang Y, Nault I, Mitran S, Iversen ES, Zhong P. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2662-2675. [PMID: 27515177 PMCID: PMC5048526 DOI: 10.1016/j.ultrasmedbio.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 05/11/2023]
Abstract
The effects of stone size on the process and comminution efficiency of shock wave lithotripsy (SWL) were investigated in experiments, numerical simulations and scale analysis. Cylindrical BegoStone phantoms with approximately equal height and diameter of either 4, 7 or 10 mm, in a total aggregated mass of about 1.5 g, were treated in an electromagnetic shock wave lithotripter field. The resultant stone comminution was found to correlate closely with the average peak pressure, P+(avg), incident on the stones. The P+(avg) threshold necessary to initiate stone fragmentation in water increased from 7.9 to 8.8 to 12.7 MPa, respectively, as stone size decreased from 10 to 7 to 4 mm. Similar changes in the P+(avg) threshold were observed for the 7- and 10-mm stones treated in 1,3-butanediol, in which cavitation is suppressed, suggesting that the observed size dependency is due to changes in stress distribution within stones of different size. Moreover, the slope of the correlation curve between stone comminution and ln(P¯+(avg)) in water increased with decreasing stone size, whereas the opposite trend was observed in 1,3-butanediol. The progression of stone comminution in SWL exhibited size-dependence: the 7- and 10-mm stones fragmented into progressively smaller pieces, whereas a significant portion (>30%) of the 4-mm stones reached a stalemate within the size range of 2.8 ∼ 4 mm, even after 1000 shocks. Analytical scaling considerations suggest size-dependent fragmentation behavior, a hypothesis further supported by numerical model calculations that reveal changing patterns of constructive and destructive wave interference and, thus, variations in the maximum tensile stress or stress integral produced in cylindrical and spherical stone of different sizes.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Isaac Nault
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sorin Mitran
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
6
|
Ghorbani M, Oral O, Ekici S, Gozuacik D, Kosar A. Review on Lithotripsy and Cavitation in Urinary Stone Therapy. IEEE Rev Biomed Eng 2016; 9:264-83. [PMID: 27249837 DOI: 10.1109/rbme.2016.2573381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cavitation is the sudden formation of vapor bubbles or voids in liquid media and occurs after rapid changes in pressure as a consequence of mechanical forces. It is mostly an undesirable phenomenon. Although the elimination of cavitation is a major topic in the study of fluid dynamics, its destructive nature could be exploited for therapeutic applications. Ultrasonic and hydrodynamic sources are two main origins for generating cavitation. The purpose of this review is to give the reader a general idea about the formation of cavitation phenomenon and existing biomedical applications of ultrasonic and hydrodynamic cavitation. Because of the high number of the studies on ultrasound cavitation in the literature, the main focus of this review is placed on the lithotripsy techniques, which have been widely used for the treatment of urinary stones. Accordingly, cavitation phenomenon and its basic concepts are presented in Section II. The significance of the ultrasound cavitation in the urinary stone treatment is discussed in Section III in detail and hydrodynamic cavitation as an important alternative for the ultrasound cavitation is included in Section IV. Finally, side effects of using both ultrasound and hydrodynamic cavitation in biomedical applications are presented in Section V.
Collapse
|
7
|
Alenezi H, Olvera-Posada D, Cadieux PA, Denstedt JD, Razvi H. The Effect of Renal Cysts on the Fragmentation of Renal Stones During Shockwave Lithotripsy: A Comparative In Vitro Study. J Endourol 2015; 30 Suppl 1:S12-7. [PMID: 26414112 DOI: 10.1089/end.2015.0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To assess the potential effect of simple renal cysts (SRC) on stone fragmentation during shockwave lithotripsy (SWL) in an in vitro model. MATERIALS AND METHODS The in vitro model was constructed using 10% ordnance gelatin (OG). Models were created to mimic four scenarios: Model A-with an air-filled cavity (suboptimal for stone fragmentation); model B-without a cavity (normal anatomy); model C-with a 3-cm serum filled cavity (to represent a small SRC); model D-with a 4-cm serum filled cavity (to represent a larger SRC). SWL was applied to 24 standardized phantom stones (weight of 2±0.1 g) in each model using a standardized protocol. Stone fragments were retrieved, then dried overnight at room air temperature. Fragmentation coefficient (FC) was calculated for each stone, for fragments<4 mm and <2 mm. RESULTS The OG in vitro model was robust enough for the proposed research. There was no fragmentation evident in model A as expected. The mean FC was 29.7 (±20.5) and 39.7 (±23.7) for <4 mm fragments (P=0.069) and 7.6 (±4.1) and 10.6 (±6.7) for <2 mm fragments (P=0.047), for noncystic and cystic models, respectively. The mean FC was 29.7 (±20.5), 38.8 (±26.2) and 40.7 (±21.3) for <4 mm fragments (P=0.213) and 7.6 (±4.1), 11.1 (±8) and 10.2 (±5.3) for <2 mm fragments (P=0.138), for models B, C, and D, respectively. CONCLUSION Our in vitro experiment confirms better stone fragmentation associated with SWL in the presence of adjacent SRC.
Collapse
Affiliation(s)
- Husain Alenezi
- 1 Division of Urology, Department of Surgery, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Ontario, Canada
| | - Daniel Olvera-Posada
- 1 Division of Urology, Department of Surgery, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Ontario, Canada
| | - Peter A Cadieux
- 2 Department of Microbiology and Immunology, The University of Western Ontario , London, Ontario, Canada .,3 School of Health Sciences, Fanshawe College , London, Ontario, Canada
| | - John D Denstedt
- 1 Division of Urology, Department of Surgery, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Ontario, Canada
| | - Hassan Razvi
- 1 Division of Urology, Department of Surgery, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Ontario, Canada
| |
Collapse
|
8
|
Neisius A, Lipkin ME, Rassweiler JJ, Zhong P, Preminger GM, Knoll T. Shock wave lithotripsy: the new phoenix? World J Urol 2014; 33:213-21. [PMID: 25081010 DOI: 10.1007/s00345-014-1369-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Following its introduction in 1980, shock wave lithotripsy (SWL) rapidly emerged as the first-line treatment for the majority of patients with urolithiasis. Millions of SWL therapies have since been performed worldwide, and nowadays, SWL still remains to be the least invasive therapy modality for urinary stones. During the last three decades, SWL technology has advanced in terms of shock wave generation, focusing, patient coupling and stone localization. The implementation of multifunctional lithotripters has made SWL available to urology departments worldwide. Indications for SWL have evolved as well. Although endoscopic treatment techniques have improved significantly and seem to take the lead in stone therapy in the western countries due to high stone-free rates, SWL continues to be considered as the first-line therapy for the treatment of most intra-renal stones and many ureteral stones. METHODS This paper reviews the fundamentals of SWL physics to facilitate a better understanding about how a lithotripter works and should be best utilized. RESULTS Advances in lithotripsy technology such as shock wave generation and focusing, advances in stone localization (imaging), different energy source concepts and coupling modalities are presented. Furthermore adjuncts to improve the efficacy of SWL including different treatment strategies are reviewed. CONCLUSION If urologists make use of a more comprehensive understanding of the pathophysiology and physics of shock waves, much better results could be achieved in the future. This may lead to a renaissance and encourage SWL as first-line therapy for urolithiasis in times of rapid progress in endoscopic treatment modalities.
Collapse
Affiliation(s)
- Andreas Neisius
- Department of Urology, Universitätsmedizin Mainz, Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany,
| | | | | | | | | | | |
Collapse
|
9
|
Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Proc Natl Acad Sci U S A 2014; 111:E1167-75. [PMID: 24639497 DOI: 10.1073/pnas.1319203111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The -6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters.
Collapse
|
10
|
Kang G, Cho SC, Coleman AJ, Choi MJ. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:1139-1148. [PMID: 24606257 DOI: 10.1121/1.4863199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A shock pressure pulse used in an extracorporeal shock wave treatment has a large negative pressure (<-5 MPa) which can produce cavitation. Cavitation cannot be measured easily, but may have known therapeutic effects. This study considers the signal recorded for several hundred microseconds using an optical hydrophone submerged in water at the focus of shock pressure field. The signal is characterized by shock pulse followed by a long tail after several microseconds; this signal is regarded as a cavitation-related signal (CRS). An experimental investigation of the CRS was conducted in the shock pressure field produced in water using an optical hydrophone (FOPH2000, RP Acoustics, Germany). The CRS was found to contain characteristic information about the shock pulse-induced cavitation. The first and second collapse times (t1 and t2) were identified in the CRS. The collapse time delay (tc = t2 - t1) increased with the driving shock pressures. The signal amplitude integrated for time from t1 to t2 was highly correlated with tc (adjusted R(2) = 0.990). This finding suggests that a single optical hydrophone can be used to measure shock pulse and to characterize shock pulse-induced cavitation.
Collapse
Affiliation(s)
- Gwansuk Kang
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, 102 Jejudaehakno, Jeju-Si, Jeju Special Self-Governing Province, 690-756, Republic of Korea
| | - Sung Chan Cho
- KORUST Limited, B-#716,717, Keumkang Penterium IT Tower, 282 Hagui-Ro, Dongan-Gu, Anyang-Si, Gyeonggi-Do, 431-810, Republic of Korea
| | - Andrew John Coleman
- Medical Physics Department, Guy's and St. Thomas' National Health Service Foundation Trust, Lambeth Palace Road, London, SE1 7EH, United Kingdom
| | - Min Joo Choi
- Department of Medicine, Jeju National University, 102 Jejudaehakno, Jeju-Si, Jeju Special Self-Governing Province, 690-756, Republic of Korea
| |
Collapse
|
11
|
Smith NB, Zhong P. A heuristic model of stone comminution in shock wave lithotripsy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1548-58. [PMID: 23927195 PMCID: PMC3745501 DOI: 10.1121/1.4812876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/12/2013] [Accepted: 02/19/2013] [Indexed: 05/22/2023]
Abstract
A heuristic model is presented to describe the overall progression of stone comminution in shock wave lithotripsy (SWL), accounting for the effects of shock wave dose and the average peak pressure, P+(avg), incident on the stone during the treatment. The model is developed through adaptation of the Weibull theory for brittle fracture, incorporating threshold values in dose and P+(avg) that are required to initiate fragmentation. The model is validated against experimental data of stone comminution from two stone types (hard and soft BegoStone) obtained at various positions in lithotripter fields produced by two shock wave sources of different beam width and pulse profile both in water and in 1,3-butanediol (which suppresses cavitation). Subsequently, the model is used to assess the performance of a newly developed acoustic lens for electromagnetic lithotripters in comparison with its original counterpart both under static and simulated respiratory motion. The results have demonstrated the predictive value of this heuristic model in elucidating the physical basis for improved performance of the new lens. The model also provides a rationale for the selection of SWL treatment protocols to achieve effective stone comminution without elevating the risk of tissue injury.
Collapse
Affiliation(s)
- Nathan B Smith
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|