1
|
Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid-structure interaction simulations. Biomech Model Mechanobiol 2021; 20:1383-1397. [PMID: 33759037 PMCID: PMC8298251 DOI: 10.1007/s10237-021-01450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/07/2021] [Indexed: 12/05/2022]
Abstract
Several image-based computational models have been used to perform mechanical analysis for atherosclerotic plaque progression and vulnerability investigations. However, differences of computational predictions from those models have not been quantified at multi-patient level. In vivo intravascular ultrasound (IVUS) coronary plaque data were acquired from seven patients. Seven 2D/3D models with/without circumferential shrink, cyclic bending and fluid–structure interactions (FSI) were constructed for the seven patients to perform model comparisons and quantify impact of 2D simplification, circumferential shrink, FSI and cyclic bending plaque wall stress/strain (PWS/PWSn) and flow shear stress (FSS) calculations. PWS/PWSn and FSS averages from seven patients (388 slices for 2D and 3D thin-layer models) were used for comparison. Compared to 2D models with shrink process, 2D models without shrink process overestimated PWS by 17.26%. PWS change at location with greatest curvature change from 3D FSI models with/without cyclic bending varied from 15.07% to 49.52% for the seven patients (average = 30.13%). Mean Max-FSS, Min-FSS and Ave-FSS from the flow-only models under maximum pressure condition were 4.02%, 11.29% and 5.45% higher than those from full FSI models with cycle bending, respectively. Mean PWS and PWSn differences between FSI and structure-only models were only 4.38% and 1.78%. Model differences had noticeable patient variations. FSI and flow-only model differences were greater for minimum FSS predictions, notable since low FSS is known to be related to plaque progression. Structure-only models could provide PWS/PWSn calculations as good approximations to FSI models for simplicity and time savings in calculation.
Collapse
|
2
|
Gómez A, Tacheau A, Finet G, Lagache M, Martiel JL, Floc'h SL, Yazdani SK, Elias-Zuñiga A, Pettigrew RI, Cloutier G, Ohayon J. Intraluminal Ultrasonic Palpation Imaging Technique Revisited for Anisotropic Characterization of Healthy and Atherosclerotic Coronary Arteries: A Feasibility Study. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:35-49. [PMID: 30348475 DOI: 10.1016/j.ultrasmedbio.2018.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/09/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Accurate mechanical characterization of coronary atherosclerotic lesions remains essential for the in vivo detection of vulnerable plaques. Using intravascular ultrasound strain measurements and based on the mechanical response of a circular and concentric vascular model, E. I. Céspedes, C. L. de Korte and A. F. van der Steen developed an elasticity-palpography technique in 2000 to estimate the apparent stress-strain modulus palpogram of the thick subendoluminal arterial wall layer. More recently, this approach was improved by our group to consider the real anatomic shape of the vulnerable plaque. Even though these two studies highlighted original and promising approaches for improving the detection of vulnerable plaques, they did not overcome a main limitation related to the anisotropic mechanical behavior of the vascular tissue. The present study was therefore designed to extend these previous approaches by considering the orthotropic mechanical properties of the arterial wall and lesion constituents. Based on the continuum mechanics theory prescribing the strain field, an elastic anisotropy index was defined. This new anisotropic elasticity-palpography technique was successfully applied to characterize ten coronary plaque and one healthy vessel geometries of patients imaged in vivo with intravascular ultrasound. The results revealed that the anisotropy index-palpograms were estimated with a good accuracy (with a mean relative error of 26.8 ± 48.8%) compared with ground true solutions.
Collapse
Affiliation(s)
- Armida Gómez
- Laboratory TIMC-IMAG/DyCTiM, UGA, CNRS UMR 5525, Grenoble, France
| | - Antoine Tacheau
- Laboratory TIMC-IMAG/DyCTiM, UGA, CNRS UMR 5525, Grenoble, France
| | - Gérard Finet
- Department of Hemodynamics and Interventional Cardiology, Hospices Civils de Lyon and Claude Bernard University Lyon1, INSERM Unit 886, Lyon, France
| | - Manuel Lagache
- Laboratory SYMME, SYMME, University Savoie Mont-Blanc, France; Polytech Annecy-Chambéry, University Savoie Mont-Blanc, Le Bourget du Lac, France
| | | | - Simon Le Floc'h
- Laboratory LMGC, CNRS UMR 5508, University of Montpellier II, Montpellier, France
| | - Saami K Yazdani
- Department of Mechanical Engineering, University of South Alabama, Mobile, Alabama, USA
| | - Alex Elias-Zuñiga
- Department of Mechanical Engineering Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey, Monterrey, Mexico
| | | | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Jacques Ohayon
- Laboratory TIMC-IMAG/DyCTiM, UGA, CNRS UMR 5525, Grenoble, France; Polytech Annecy-Chambéry, University Savoie Mont-Blanc, Le Bourget du Lac, France.
| |
Collapse
|
3
|
Guo X, Giddens DP, Molony D, Yang C, Samady H, Zheng J, Mintz GS, Maehara A, Wang L, Pei X, Li ZY, Tang D. Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach. J Biomech Eng 2018; 140:2659953. [PMID: 29059332 PMCID: PMC5816254 DOI: 10.1115/1.4038263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/04/2017] [Indexed: 12/26/2022]
Abstract
Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid-structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain <12%; FSS <6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.
Collapse
Affiliation(s)
- Xiaoya Guo
- Department of Mathematics, Southeast University, Nanjing 210096, China
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - David Molony
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10022
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10022
| | - Liang Wang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Xuan Pei
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Yong Li
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing 210096, China
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| |
Collapse
|
4
|
|
5
|
Kok AM, Speelman L, Virmani R, van der Steen AFW, Gijsen FJH, Wentzel JJ. Peak cap stress calculations in coronary atherosclerotic plaques with an incomplete necrotic core geometry. Biomed Eng Online 2016; 15:48. [PMID: 27145748 PMCID: PMC4857277 DOI: 10.1186/s12938-016-0162-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stress calculations in atherosclerotic coronary vulnerable plaques can aid in predicting coronary cap rupture. In vivo plaque geometry and composition of coronary arteries can merely be obtained via intravascular imaging. Only optical driven imaging techniques have sufficient resolution to visualize the fibrous cap, but due to limited penetration depth deeper components such as the backside of the necrotic core (NC) are generally not visible. The goal of this study was to investigate whether peak cap stresses can be approximated by reconstructing the backside of the NC. METHODS Manual segmentations of coronary histological cross-sections served as a geometrical ground truth and were obtained from seven patients resulting in 73 NCs. Next, the backside was removed and reconstructed according to an estimation of the relative necrotic core thickness (rNCt). The rNCt was estimated at three locations along the NC angle and based on either group averaged parameters or plaque specific parameters. Stress calculations were performed in both the ground truth geometry and the reconstructed geometries and compared. RESULTS Good geometrical agreement was found between the ground truth NC and the reconstructed NCs, based on group averaged rNCt estimation and plaque specific rNCt estimation, measuring the NC area difference (25.1 % IQR 14.0-41.3 % and 17.9 % IQR 9.81-32.7 %) and similarity index (0.85 IQR 0.77-0.90 and 0.88 IQR 0.79-0.91). The peak cap stresses obtained with both reconstruction methods showed a high correlation with respect to the ground truth, r(2) = 0.91 and r(2) = 0.95, respectively. For high stress plaques, the peak cap stress difference with respect to the ground truth significantly improved for the NC reconstruction based plaque specific features (6 %) compared to the reconstruction group averaged based (16 %). CONCLUSIONS In conclusion, good geometry and stress agreement was observed between the ground truth NC geometry and the reconstructed geometries. Although group averaged rNCt estimation seemed to be sufficient for the NC reconstruction and stress calculations, including plaque specific data further improved stress predictions, especially for higher stresses.
Collapse
Affiliation(s)
- Annette M Kok
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| | - Lambert Speelman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | | | - Antonius F W van der Steen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.,Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Frank J H Gijsen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Zimarino M, Prati F, Marano R, Angeramo F, Pescetelli I, Gatto L, Marco V, Bruno I, De Caterina R. The value of imaging in subclinical coronary artery disease. Vascul Pharmacol 2016; 82:20-9. [PMID: 26851577 DOI: 10.1016/j.vph.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Although the treatment of acute coronary syndromes (ACS) has advanced considerably, the ability to detect, predict, and prevent complications of atherosclerotic plaques, considered the main cause of ACS, remains elusive. Several imaging tools have therefore been developed to characterize morphological determinants of plaque vulnerability, defined as the propensity or probability of plaques to complicate with coronary thrombosis, able to predict patients at risk. By utilizing both intravascular and noninvasive imaging tools, indeed prospective longitudinal studies have recently provided considerable knowledge, increasing our understanding of determinants of plaque formation, progression, and instabilization. In the present review we aim at 1) critically analyzing the incremental utility of imaging tools over currently available "traditional" methods of risk stratification; 2) documenting the capacity of such modalities to monitor atherosclerosis progression and regression according to lifestyle modifications and targeted therapy; and 3) evaluating the potential clinical relevance of advanced imaging, testing whether detection of such lesions may guide therapeutic decisions and changes in treatment strategy. The current understanding of modes of progression of atherosclerotic vascular disease and the appropriate use of available diagnostic tools may already now gauge the selection of patients to be enrolled in primary and secondary prevention studies. Appropriate trials should now, however, evaluate the cost-effectiveness of an aggressive search of vulnerable plaques, favoring implementation of such diagnostic tools in daily practice.
Collapse
Affiliation(s)
- Marco Zimarino
- Institute of Cardiology and Center of Excellence on Aging, "G. d'Annunzio" University, Chieti, Italy.
| | - Francesco Prati
- San Giovanni Addolorata Hospital, CLI-Foundation, Rome, Italy
| | - Riccardo Marano
- Department of Radiological Sciences, Institute of Radiology "A. Gemelli" University Polyclinic Foundation, Catholic University, Rome, Italy
| | - Francesca Angeramo
- Institute of Cardiology and Center of Excellence on Aging, "G. d'Annunzio" University, Chieti, Italy
| | - Irene Pescetelli
- Institute of Cardiology and Center of Excellence on Aging, "G. d'Annunzio" University, Chieti, Italy
| | - Laura Gatto
- San Giovanni Addolorata Hospital, CLI-Foundation, Rome, Italy
| | - Valeria Marco
- San Giovanni Addolorata Hospital, CLI-Foundation, Rome, Italy
| | - Isabella Bruno
- Institute of Nuclear Medicine, "A. Gemelli" University Polyclinic Foundation, Catholic University, Rome, Italy
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, "G. d'Annunzio" University, Chieti, Italy
| |
Collapse
|
7
|
Migliavacca F, Chiastra C, Chatzizisis YS, Dubini G. Virtual bench testing to study coronary bifurcation stenting. EUROINTERVENTION 2015; 11 Suppl V:V31-4. [DOI: 10.4244/eijv11sva7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty. Ann Biomed Eng 2014; 42:2425-39. [DOI: 10.1007/s10439-014-1107-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|