1
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
2
|
Cattaneo PM, Cornelis MA. Orthodontic Tooth Movement Studied by Finite Element Analysis: an Update. What Can We Learn from These Simulations? Curr Osteoporos Rep 2021; 19:175-181. [PMID: 33538966 DOI: 10.1007/s11914-021-00664-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW To produce an updated overview of the use of finite element (FE) analysis for analyzing orthodontic tooth movement (OTM). Different levels of simulation complexity, including material properties and level of morphological representation of the alveolar complex, will be presented and evaluated, and the limitations will be discussed. RECENT FINDINGS Complex formulations of the PDL have been proposed, which might be able to correctly predict the behavior of the PDL both when chewing forces and orthodontic forces are simulated in FE models. The recent findings do not corroborate the simplified view of the classical OTM theories. The use of complex and biologically coherent FE models can help understanding the mechanisms leading to OTM as well as predicting the risk of root resorption related to specific force systems and magnitudes.
Collapse
Affiliation(s)
- Paolo M Cattaneo
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 720 Swanston St, Carlton VIC, Melbourne, 3053, Australia.
| | - Marie A Cornelis
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 720 Swanston St, Carlton VIC, Melbourne, 3053, Australia
| |
Collapse
|
3
|
Bemmann M, Schulz-Kornas E, Hammel JU, Hipp A, Moosmann J, Herrel A, Rack A, Radespiel U, Zimmermann E, Kaiser TM, Kupczik K. Movement analysis of primate molar teeth under load using synchrotron X-ray microtomography. J Struct Biol 2020; 213:107658. [PMID: 33207268 DOI: 10.1016/j.jsb.2020.107658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Mammalian teeth have to sustain repetitive and high chewing loads without failure. Key to this capability is the periodontal ligament (PDL), a connective tissue containing a collagenous fibre network which connects the tooth roots to the alveolar bone socket and which allows the teeth to move when loaded. It has been suggested that rodent molars under load experience a screw-like downward motion but it remains unclear whether this movement also occurs in primates. Here we use synchroton micro-computed tomography paired with an axial loading setup to investigate the form-function relationship between tooth movement and the morphology of the PDL space in a non-human primate, the mouse lemur (Microcebus murinus). The loading behavior of both mandibular and maxillary molars showed a three-dimensional movement with translational and rotational components, which pushes the tooth into the alveolar socket. Moreover, we found a non-uniform PDL thickness distribution and a gradual increase in volumetric proportion of the periodontal vasculature from cervical to apical. Our results suggest that the PDL morphology may optimize the three-dimensional tooth movement to avoid high stresses under loading.
Collapse
Affiliation(s)
- Maximilian Bemmann
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Department of Cariology, Endodontics and Periodontology, University of Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany
| | - Ellen Schulz-Kornas
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Department of Cariology, Endodontics and Periodontology, University of Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany; Center of Natural History (CeNak), University of Hamburg, Hamburg, Germany
| | - Jörg U Hammel
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Alexander Hipp
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Anthony Herrel
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Alexander Rack
- ESRF The European Synchrotron, 71 Rue des Martyrs, 38000 Grenoble, France
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Thomas M Kaiser
- Center of Natural History (CeNak), University of Hamburg, Hamburg, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Friedrichsdorf SP, Arana-Chavez VE, Cattaneo PM, Spin-Neto R, Dominguez GC. Effect of the software binning and averaging data during microcomputed tomography image acquisition. Sci Rep 2019; 9:10562. [PMID: 31332205 PMCID: PMC6646350 DOI: 10.1038/s41598-019-46530-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
This study describes the effect of the software binning and data averaging during micro CT volume acquisition, on the assessment of root resorption volumes. The mesial roots (n = 9), after orthodontic tooth movement during 14 days, were scanned, using a micro CT system (9 µm/pixel). All roots were reconstructed and the volumes of the resorption lacunae evaluated. The height and width of the pixels vary according to the parameters (A1, A2, A3, A4, A5, A6, A7, A8, A9) used during the scan. In the root #1 the mean volumes of resorption were similar in A4 and A7; in the root #2 there was no similarity in the mean volumes of resorption in any of the parameters; in root #3 only A4 presented mean volume different from zero (3.05 × 10°). In the root #5, the A1 and A7 presented similar mean volumes and in the A6 and A9 presented near mean volumes. In the root #9 the A1, A4, and A7 presented similar mean volumes and A6 and A9 also had similar mean volumes. Significant difference was detected in the volume of resorption among the roots #2, #5 and #9 (p = 0.04). When analyzing delicate structures such as the roots of rats’ molars, the variation of such parameters will significantly influence the results.
Collapse
Affiliation(s)
- Simone Peixe Friedrichsdorf
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil.
| | - Victor Elias Arana-Chavez
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Paolo Maria Cattaneo
- Department of Dentistry and Oral Health, Section of Orthodontics, Aarhus University, Aarhus C, Denmark
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Aarhus University, Aarhus C, Denmark
| | - Gladys Cristina Dominguez
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
5
|
McCormack SW, Witzel U, Watson PJ, Fagan MJ, Gröning F. Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains. PLoS One 2017; 12:e0188707. [PMID: 29190785 PMCID: PMC5708643 DOI: 10.1371/journal.pone.0188707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/10/2017] [Indexed: 01/28/2023] Open
Abstract
Alveolar bone remodelling is vital for the success of dental implants and orthodontic treatments. However, the underlying biomechanical mechanisms, in particular the function of the periodontal ligament (PDL) in bone loading and remodelling, are not well understood. The PDL is a soft fibrous connective tissue that joins the tooth root to the alveolar bone and plays a critical role in the transmission of loads from the tooth to the surrounding bone. However, due to its complex structure, small size and location within the tooth socket it is difficult to study in vivo. Finite element analysis (FEA) is an ideal tool with which to investigate the role of the PDL, however inclusion of the PDL in FE models is complex and time consuming, therefore consideration must be given to how it is included. The aim of this study was to investigate the effects of including the PDL and its fibrous structure in mandibular finite element models. A high-resolution model of a human molar region was created from micro-computed tomography scans. This is the first time that the fibrous structure of the PDL has been included in a model with realistic tooth and bone geometry. The results show that omission of the PDL creates a more rigid model, reducing the strains observed in the mandibular corpus which are of interest when considering mandibular functional morphology. How the PDL is modelled also affects the strains. The inclusion of PDL fibres alters the strains in the mandibular bone, increasing the strains in the tooth socket compared to PDL modelled without fibres. As strains in the alveolar bone are thought to play a key role in bone remodelling during orthodontic tooth movement, future FE analyses aimed at improving our understanding and management of orthodontic treatment should include the fibrous structure of the PDL.
Collapse
Affiliation(s)
- Steven W. McCormack
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, United Kingdom
| | - Ulrich Witzel
- Fakultät für Maschinenbau, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, Germany
| | - Peter J. Watson
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, United Kingdom
| | - Michael J. Fagan
- Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull, United Kingdom
| | - Flora Gröning
- Arthritis and Musculoskeletal Medicine Research Programme, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|