1
|
Massot C, Bègue J, Simoneau-Buessinger E, Donze C, Caderby T, Leteneur S. Patients with multiple sclerosis and low disability display cautious rotational behavior during gait initiation. Clin Biomech (Bristol, Avon) 2025; 122:106431. [PMID: 39848098 DOI: 10.1016/j.clinbiomech.2025.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Multiple sclerosis induces locomotor impairments. The objective was to characterize the effects of Multiple Sclerosis on whole-body angular momentum control during gait initiation. METHODS Fifteen patients with Multiple Sclerosis with Expanded Disability status scale of 2.5 and 16 healthy participants were instructed to perform gait initiation. Spatiotemporal parameters, whole-body angular momentum, net external moment about the body's center of mass and its components were calculated by using a 3D motion capture system and two force plates. FINDINGS Patients with Multiple Sclerosis had a significantly smaller whole-body angular momentum range during the double support phase of gait initiation in the transversal plane (p = 0.011), and smaller net external moment at the transition between the initial double support phase and the execution phase in the sagittal plane (p = 0.013). In the transversal plane, patients with Multiple Sclerosis had a smaller net external moment during the double support phase (p = 0.024) and between the double support phase and the execution phase (p < 0.001). INTERPRETATION Despite preserved spatiotemporal parameters during gait initiation, patients with Multiple Sclerosis with low disability had reduced net external moments in the transversal and sagittal planes during the critical transitional period of this functional task, which appeared as a compensatory modality to preserve global postural stability. This finding highlights the cautious rotational behaviors in these planes to prevent the risk of falling and preserve dynamic stability. Whole-body angular momentum and net external moment are relevant parameters for functional and disease progression follow-up of the disease.
Collapse
Affiliation(s)
- C Massot
- Service de Médecine Physique et de Réadaptation, Hôpital Saint Philibert, Lomme, France; ETHICS, (EA7446), Lille Catholic University, FLSH, Lille, France; Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France.
| | - J Bègue
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de La Réunion, Le Tampon, La Réunion, France
| | - E Simoneau-Buessinger
- Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
| | - C Donze
- Service de Médecine Physique et de Réadaptation, Hôpital Saint Philibert, Lomme, France; ETHICS, (EA7446), Lille Catholic University, FLSH, Lille, France
| | - T Caderby
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de La Réunion, Le Tampon, La Réunion, France
| | - S Leteneur
- Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
| |
Collapse
|
2
|
Ziemnicki DM, McDonald KA, Molitor SL, Egolf JB, Cruz JP, Lee KE, Zelik KE. Development and Preliminary Evaluation of a Bimodal Foot Prosthesis for Walking and Running. J Biomech Eng 2024; 146:091010. [PMID: 38758531 DOI: 10.1115/1.4065516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
People often alternate between bouts of walking and running, for instance, when adults participate in recreational activities. Transitioning between activities can be challenging for prosthesis users because existing prosthetic feet are not well-suited for both tasks. Meanwhile, switching between prostheses for different tasks is often impractical. Collectively, these challenges can present barriers to physical activity participation for people with limb loss, which can negatively impact social or physical health. This work describes the development and evaluation of a passive bimodal prosthetic foot prototype with different configurations and stiffnesses for walking and running. Users rated the bimodal prosthesis higher for standing and walking compared to a running prosthesis (+2.3 for both tasks on a seven-point Likert scale). Users rated the bimodal prosthesis higher for running compared to a walking prosthesis (+1.7 and +0.5 for 2.0 and 2.5 m/s running, respectively). Changing from walking to running mode increased the device's stiffness by 23-84%, depending on the user's preference. Users could switch between bimodal prosthesis walking and running modes quickly (21.3 ± 12.0 s). Overall, the preliminary results were encouraging in terms of user satisfaction, stiffness change between modes, and mode-switching speed. These findings motivate future exploration of this bimodal prosthesis concept.
Collapse
Affiliation(s)
- David M Ziemnicki
- Department of Mechanical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235
| | - Kirsty A McDonald
- School of Health Sciences, University of New South Wales, Level 2, Wallace Wurth Building, Sydney 2052, NSW, Australia
| | - Stephanie L Molitor
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235; Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78712
| | - Jeremiah B Egolf
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235
| | - Justin P Cruz
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235; Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward Building 1-003, Chicago, IL 60611-3008
| | - Kathryn E Lee
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235
| | - Karl E Zelik
- Department of Mechanical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235; Department of Biomedical Engineering, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235; Department of Physical Medicine and Rehabilitation, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235
| |
Collapse
|
3
|
Tang YW, Murai A, Hobara H. Mediation of the mediolateral ground reaction force profile to maintain straight running among unilateral transfemoral amputees. Sci Rep 2023; 13:7823. [PMID: 37188732 DOI: 10.1038/s41598-023-34288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The mediolateral ground reaction force (M-L GRF) profile that realizes a symmetrical mediolateral ground reaction impulse (M-L GRI) between both limbs is essential for maintaining a straight movement path. We aimed to examine the M-L GRF production across different running speeds in unilateral transfemoral amputees (TFA) to identify strategies for maintaining straight running. The average medial and lateral GRF, contact time (tc), M-L GRI, step width, and center of pressure angle (COPANG) were analyzed. Nine TFAs performed running trials at 100% speed on an instrumented treadmill. Trials were set at 30-80% speed with an increment of 10%. Seven steps from the unaffected and affected limbs were analyzed. Overall, the unaffected limbs exhibited a higher average medial GRF than the affected limbs. The M-L GRI were similar between both limbs at all speeds, implying that the participants were able to maintain a straight running path. The affected limb exhibited a longer tc and a lower M-L GRF profile than the unaffected limb. The results showed that unilateral TFAs adopted limb-specific strategies to maintain a straight running path, and that these limb-specific strategies were consistent across different running speeds.
Collapse
Affiliation(s)
- Ying Wai Tang
- Department of Human and Engineered Environmental Study, University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan.
| | - Akihiko Murai
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroaki Hobara
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| |
Collapse
|
4
|
Hadj-Moussa F, Zahid HB, Wright FV, Kelland K, Andrysek J. 'It's more than just a running leg': a qualitative study of running-specific prosthesis use by children and youth with lower limb absence. Disabil Rehabil 2022; 44:7190-7198. [PMID: 34665069 DOI: 10.1080/09638288.2021.1986748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The purpose of this study was to investigate the use of running-specific prostheses (RSPs) by children with lower limb absence (LLA) along with the benefits and challenges of RSPs. MATERIALS AND METHODS In this descriptive qualitative study, eight children (ages 8-20 years) and their parents participated in semi-structured interviews. The interviews were audio-recorded and transcribed. Coded data were the foundation for central theme development. RESULTS Three main themes were generated. "Run faster, jump higher, do more" (the benefits of RSP use), "Every leg serves its purpose" (comparing functionality between daily use prostheses and RSPs), and "A lot more to think about" (additional considerations with RSP use). CONCLUSIONS RSPs have a positive impact in promoting children's engagement in sports and physical activities. While some children used their RSP primarily for running, others wore it for a broader range of physical activities. Issues with balance and discomfort caused by leg length discrepancies and/or ill-fitting sockets limited daily wear time. Limitations related to current RSP designs and clinical implementation should be addressed to optimize the functional potential of children with unilateral or bilateral LLA.Implications for rehabilitationRunning-specific prostheses (RSPs) positively impacted children's ability to participate in some sports with peers promoting their physical and social well-being.The main issues that children faced were discomfort, difficulty balancing, and inability to use RSPs for certain sports, while parents' issues focused on supporting prosthesis use and transport, and adjustments of different prostheses to keep up with their child's growth.Clinicians should be aware of the challenges of RSP use to best support children and their families.Designers should focus on addressing limitations with current RSPs to facilitate the diverse needs of pediatric users.
Collapse
Affiliation(s)
- Firdous Hadj-Moussa
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Hafsa B Zahid
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - F Virginia Wright
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Physical Therapy, University of Toronto, Toronto, Canada
| | - Kerri Kelland
- Physical Therapy, University of Toronto, Toronto, Canada.,Department of Orthotics and Prosthetics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Jan Andrysek
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Barnett CT, De Asha AR, Skervin TK, Buckley JG, Foster RJ. Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users. Gait Posture 2022; 98:153-159. [PMID: 36126535 DOI: 10.1016/j.gaitpost.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with lower-limb amputation can use running specific prostheses (RSP) that store and then return elastic energy during stance. However, it is unclear whether varying the stiffness category of the same RSP affects spring-mass behaviour during self-selected, submaximal speed running in individuals with unilateral transtibial amputation. RESEARCH QUESTION The current study investigates how varying RSP stiffness affects limb stiffness, running performance, and associated joint kinetics in individuals with a unilateral transtibial amputation. METHODS Kinematic and ground reaction force data were collected from eight males with unilateral transtibial amputation who ran at self-selected submaximal speeds along a 15 m runway in three RSP stiffness conditions; recommended habitual stiffness (HAB) and, following 10-minutes of familiarisation, stiffness categories above (+1) and below (-1) the HAB. Stance-phase centre of mass velocity, contact time, limb stiffness' and joint/RSP work were computed for each limb across RSP stiffness conditions. RESULTS With increased RSP stiffness, prosthetic limb stiffness increased, whilst intact limb stiffness decreased slightly (p<0.03). Centre of mass forward velocity during stance-phase (p<0.02) and contact time (p<0.04) were higher in the intact limb and lower in the prosthetic limb but were unaffected by RSP stiffness. Intact limb hip joint positive work increased for both the +1 and -1 conditions but remained unchanged across conditions in the prosthetic limb (p<0.02). SIGNIFICANCE In response to changes in RSP stiffness, there were acute increased mechanical demands on the intact limb, reflecting a reliance on the intact limb during running. However, overall running speed was unaffected, suggesting participants acutely adapted to an RSP of a non-prescribed stiffness.
Collapse
Affiliation(s)
- C T Barnett
- School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | - A R De Asha
- School of Science and Technology, Nottingham Trent University, Nottingham, UK; C-Motion, Inc., Germantown, MD, USA
| | - T K Skervin
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - J G Buckley
- Department of Biomedical & Electronics Engineering, University of Bradford, Bradford, UK
| | - R J Foster
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
6
|
Tacca JR, Beck ON, Taboga P, Grabowski AM. Running-specific prosthesis model, stiffness and height affect biomechanics and asymmetry of athletes with unilateral leg amputations across speeds. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211691. [PMID: 35706678 PMCID: PMC9156922 DOI: 10.1098/rsos.211691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/04/2022] [Indexed: 05/03/2023]
Abstract
Athletes with transtibial amputation (TTA) use running-specific prostheses (RSPs) to run. RSP configuration likely affects the biomechanics of such athletes across speeds. We determined how the use of three RSP models (Catapult, Sprinter and Xtend) with three stiffness categories (recommended, ±1), and three heights (recommended, ±2 cm) affected contact length (Lc ), stance average vertical ground reaction force (F avg), step frequency (f step) and asymmetry between legs for 10 athletes with unilateral TTA at 3-7 m s-1. The use of the Xtend versus Catapult RSP decreased Lc (p = 2.69 × 10-7) and F avg asymmetry (p = 0.032); the effect on Lc asymmetry diminished with faster speeds (p = 0.0020). The use of the Sprinter versus Catapult RSP decreased F avg asymmetry (p = 7.00 × 10-5); this effect was independent of speed (p = 0.90). The use of a stiffer RSP decreased Lc asymmetry (p ≤ 0.00033); this effect was independent of speed (p ≥ 0.071). The use of a shorter RSP decreased Lc (p = 5.86 × 10-6), F avg (p = 8.58 × 10-6) and f step asymmetry (p = 0.0011); each effect was independent of speed (p ≥ 0.15). To minimize asymmetry, athletes with unilateral TTA should use an Xtend or Sprinter RSP with 2 cm shorter than recommended height and stiffness based on intended speed.
Collapse
Affiliation(s)
- Joshua R. Tacca
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Owen N. Beck
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Paolo Taboga
- Department of Kinesiology, Sacramento State University, Sacramento, CA, USA
| | - Alena M. Grabowski
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, USA
| |
Collapse
|
7
|
Back squat mechanics in persons with a unilateral transtibial amputation: A case study. Prosthet Orthot Int 2022; 46:50-53. [PMID: 34789708 DOI: 10.1097/pxr.0000000000000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/09/2021] [Indexed: 02/03/2023]
Abstract
CASE DESCRIPTION A 30-year-old person with a unilateral transtibial amputation (TTAmp) was assessed performing an Olympic-style back squat with an energy storage and return prosthetic foot. OBJECTIVE Determine joint-level movement strategies of an individual with TTAmp while performing an Olympic-style back squat. STUDY DESIGN Case study design. TREATMENT Back squat mechanics are evaluated in an individual with TTAmp by comparing the contribution of the ankle, knee, and hip joint to total positive and negative amputated and sound limb work. OUTCOMES The hip joint was the greatest contributor to total positive limb work compared with the knee and ankle, respectively, in the amputated (55.0% hip vs. 30.8% knee, P < 0.001; vs. 14.2% ankle, P = 0.001) and sound limbs (52.2% hip vs. 38.9% knee, P < 0.001; vs. 8.9% ankle, P < 0.001). The hip joint was the greatest contributor to total negative limb work compared with the ankle in both the amputated (51.0% hip vs. 15.9% ankle, P < 0.001) and sound limbs (47.3% hip vs. 10.0% ankle, P < 0.001) and the knee in the amputated limb (51.0% hip vs. 32.5% knee, P < 0.001). Ankle joint power demonstrated an atypical bimodal negative/positive/negative/positive pattern. CONCLUSION The individual with TTAmp used a hip-dominant joint strategy in both the amputated and sound limbs while demonstrating more potential to optimize the prosthetic foot's energy storage and return capabilities when performing a back squat.
Collapse
|
8
|
Hadj-Moussa F, Ngan CC, Andrysek J. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review. Gait Posture 2022; 92:83-95. [PMID: 34837772 DOI: 10.1016/j.gaitpost.2021.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Running-specific prostheses (RSPs) are biomechanically designed to enable individuals with lower limb amputations to engage in high level sports. RESEARCH QUESTION What is the influence of RSP use on the running biomechanics of individuals with lower limb amputations? METHODS An article search was conducted in six databases since their inception to July 2021. Two independent reviewers assessed the title, abstract and full texts in the review process. The quality of the papers was appraised. The review included a total of 35 articles. RESULTS Main findings indicate force production is a limitation of RSPs. Individuals with lower limb absence employ a variety of compensatory strategies such as adjusting their step frequency, contact length and joint kinetics to improve their running performance. Leg stiffness modulation and external factors relating to the RSP design and fitting play important roles in RSP biomechanics. For individuals with unilateral amputations, the increased loading of the intact limb could increase the risk of acute injury or chronic joint degradation. SIGNIFICANCE To improve their running performance, runners with lower limb amputations employ various compensatory strategies, such as altering the spatiotemporal and kinetic parameters. Factors relating to RSP height, stiffness, shape, and alignment also play an important role in terms of running biomechanics and should be considered in RSP design and fitting. Future studies should focus on the use of RSPs for recreation, in pediatric populations, with certain amputation levels, as well as the impact of training and running techniques.
Collapse
Affiliation(s)
- Firdous Hadj-Moussa
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Calvin C Ngan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Jan Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada.
| |
Collapse
|
9
|
Firouzi V, Bahrami F, Sharbafi MA. Human balance control in 3D running based on virtual pivot point concept. J Exp Biol 2022; 225:274032. [PMID: 35040960 DOI: 10.1242/jeb.243080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
Abstract
Balance control is one of the crucial challenges in bipedal locomotion. Humans need to maintain their trunk upright while the body behaves like an inverted pendulum which is inherently unstable. Instead, the virtual pivot point (VPP) concept introduced a new virtual pendulum model to the human balance control paradigm by analyzing the ground reaction forces (GRF) in the body coordinate frame. This paper presents novel VPP-based analyses of the postural stability of human running in a 3D space. We demonstrate the relation between the VPP position and the gait speed. The experimental results suggest different control strategies in frontal and sagittal planes. The ground reaction forces intersect below the center of mass in the sagittal plane and above the center of mass in the frontal plane. These VPP locations are found for the sagittal and frontal planes at all running speeds, respectively. We introduced a 3D VPP-based model which can replicate the kinematic and kinetic behavior of human running. The similarity between the experimental and simulation results indicates the ability of the VPP concept in predicting human balance control in running and can support its applicability for gait assistance.
Collapse
Affiliation(s)
- Vahid Firouzi
- Electrical and Computer Engineering Department, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Electrical and Computer Engineering Department, College of Engineering, University of Tehran, Tehran, Iran
| | - Maziar A Sharbafi
- Lauflabor Laboratory, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
10
|
Begue J, Peyrot N, Lesport A, Turpin NA, Watier B, Dalleau G, Caderby T. Segmental contribution to whole-body angular momentum during stepping in healthy young and old adults. Sci Rep 2021; 11:19969. [PMID: 34620974 PMCID: PMC8497562 DOI: 10.1038/s41598-021-99519-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Recent evidence suggests that during volitional stepping older adults control whole-body angular momentum (H) less effectively than younger adults, which may impose a greater challenge for balance control during this task in the elderly. This study investigated the influence of aging on the segment angular momenta and their contributions to H during stepping. Eighteen old and 15 young healthy adults were instructed to perform a series of stepping at two speed conditions: preferred and as fast as possible. Full-body kinematics were recorded to compute angular momenta of the trunk, arms and legs and their contributions to total absolute H on the entire stepping movement. Results indicated that older adults exhibited larger angular momenta of the trunk and legs in the sagittal plane, which contributed to a higher sagittal plane H range during stepping compared to young adults. Results also revealed that older adults had a greater trunk contribution and lower leg contribution to total absolute H in the sagittal plane compared to young adults, even though there was no difference in the other two planes. These results stress that age-related changes in H control during stepping arise as a result of changes in trunk and leg rotational dynamics.
Collapse
Affiliation(s)
- Jérémie Begue
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430, Le Tampon, Ile de la Réunion, France.
| | - Nicolas Peyrot
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430, Le Tampon, Ile de la Réunion, France
- Mouvement - Interactions - Performance, MIP, Le Mans Université, EA 4334, 72000, Le Mans, France
| | - Angélique Lesport
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430, Le Tampon, Ile de la Réunion, France
| | - Nicolas A Turpin
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430, Le Tampon, Ile de la Réunion, France
| | - Bruno Watier
- LAAS-CNRS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Georges Dalleau
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430, Le Tampon, Ile de la Réunion, France
| | - Teddy Caderby
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430, Le Tampon, Ile de la Réunion, France
| |
Collapse
|
11
|
Begue J, Peyrot N, Dalleau G, Caderby T. Effect of increasing speed on whole-body angular momentum during stepping in the elderly. J Biomech 2021; 122:110436. [PMID: 33901936 DOI: 10.1016/j.jbiomech.2021.110436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that older adults may have difficulty controlling whole-body angular momentum (H) during volitional stepping, which could impose a major challenge for balance control and result in potential falls. However, it is not known if and how H is influenced by speed when stepping. This study aimed to investigate the effect on H of increasing speed during step initiation in older adults. Twenty-seven healthy individuals over 60 were enrolled in the current study and were instructed to perform a series of step initiations with their dominant leg under two speed conditions: at preferred speed and as fast as possible. Two force plates and a motion-capture system were used to record H and the components of the net external moment (moment arms and ground reaction forces) during the double support and step execution phases of stepping. Results revealed that increasing speed of stepping affected H differently in both stepping phases and in the different planes. H ranges in all three planes increased with speed during the double support phase. During the step execution phase, while H ranges in frontal and transversal planes decreased, sagittal plane H range significantly increased with speed. This increased H range in the sagittal plane, which may result from the task demands, could impose a greater challenge for balance control in the elderly.
Collapse
Affiliation(s)
- Jérémie Begue
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France.
| | - Nicolas Peyrot
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France; Le Mans Université, Movement - Interactions - Performance, MIP, EA 4334, F-72000 Le Mans, France
| | - Georges Dalleau
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France
| | - Teddy Caderby
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France
| |
Collapse
|
12
|
Harper NG, Wilken JM, Neptune RR. Muscle Contributions to Balance Control During Amputee and Nonamputee Stair Ascent. J Biomech Eng 2020; 142:121007. [PMID: 32469051 DOI: 10.1115/1.4047387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/08/2022]
Abstract
Dynamic balance is controlled by lower-limb muscles and is more difficult to maintain during stair ascent compared to level walking. As a result, individuals with lower-limb amputations often have difficulty ascending stairs and are more susceptible to falls. The purpose of this study was to identify the biomechanical mechanisms used by individuals with and without amputation to control dynamic balance during stair ascent. Three-dimensional muscle-actuated forward dynamics simulations of amputee and nonamputee stair ascent were developed and contributions of individual muscles, the passive prosthesis, and gravity to the time rate of change of angular momentum were determined. The prosthesis replicated the role of nonamputee plantarflexors in the sagittal plane by contributing to forward angular momentum. The prosthesis largely replicated the role of nonamputee plantarflexors in the transverse plane but resulted in a greater change of angular momentum. In the frontal plane, the prosthesis and nonamputee plantarflexors contributed oppositely during the first half of stance while during the second half of stance, the prosthesis contributed to a much smaller extent. This resulted in altered contributions from the intact leg plantarflexors, vastii and hamstrings, and the intact and residual leg hip abductors. Therefore, prosthetic devices with altered contributions to frontal-plane angular momentum could improve balance control during amputee stair ascent and minimize necessary muscle compensations. In addition, targeted training could improve the force production magnitude and timing of muscles that regulate angular momentum to improve balance control.
Collapse
Affiliation(s)
- Nicole G Harper
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| | - Jason M Wilken
- Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Brooke Army Medical Center, Ft. Sam Houston, TX 78234; Department of Physical Therapy and Rehabilitation Science, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52240
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712
| |
Collapse
|
13
|
Sepp LA, Baum BS, Nelson-Wong E, Silverman AK. Joint work and ground reaction forces during running with daily-use and running-specific prostheses. J Biomech 2020; 101:109629. [PMID: 32008807 DOI: 10.1016/j.jbiomech.2020.109629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 11/30/2022]
Abstract
Some individuals with a transtibial amputation (TTA) may not have access to running-specific prostheses and therefore choose to run using their daily-use prosthesis. Unlike running-specific prostheses, daily-use prostheses are not designed for running and may result in biomechanical differences that influence injury risk. To investigate these potential differences, we assessed the effect of amputation, prosthesis type, and running speed on joint work and ground reaction forces. 13 people with and without a unilateral TTA ran at speeds ranging from 2.5 m/s to 5.0 m/s. People with TTA ran using their own daily-use and running-specific prostheses. Body kinematics and ground reaction forces were collected and used to compute joint work. People with TTA had smaller peak braking, propulsive and medial/lateral ground reaction forces from the amputated leg compared to people without TTA. People wearing running-specific prostheses had smaller peak amputated leg vertical ground reaction forces compared to daily-use prostheses at speeds above 3.5 m/s. Medial/lateral forces were also smaller in running-specific prostheses, which may present balance challenges when running on varied terrain. Running-specific prostheses stored and returned more energy and provided greater propulsion, resulting in more similar positive hip work between legs compared to daily-use prostheses. Increases in positive hip work, but not device work, highlight the importance of the hip in increasing running speed. Running-specific devices may be beneficial for joint health at running-speeds above 3.5 m/s and provide advantages in propulsion and energy return at all speeds compared to daily-use prostheses, helping people with TTA achieve faster running speeds.
Collapse
Affiliation(s)
- Lauren A Sepp
- Department of Mechanical Engineering, Colorado School of Mines Golden, CO 80401, United States
| | - Brian S Baum
- School of Physical Therapy Regis University Denver, CO 80221, United States
| | - Erika Nelson-Wong
- School of Physical Therapy Regis University Denver, CO 80221, United States
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines Golden, CO 80401, United States.
| |
Collapse
|
14
|
Begue J, Peyrot N, Dalleau G, Caderby T. Age-related changes in the control of whole-body angular momentum during stepping. Exp Gerontol 2019; 127:110714. [PMID: 31479728 DOI: 10.1016/j.exger.2019.110714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Appropriate control of whole-body angular momentum (H) is crucial to maintain dynamic balance and thus avoid falling during daily activities. Poor H control ability during locomotion has been found in people with an increased risk of falling, such as post-stroke patients and amputees. In contrast, little is known about the control of H during locomotion in the elderly. The aim of this study was to investigate whether and how aging influences three-dimensional H control during initiation of stepping. METHODS Twenty-two healthy old and 22 healthy young individuals were instructed to perform a series of initiation of stepping with their dominant leg and at their self-selected preferred pace. Two force plates and a motion capture system were used to record H, the net external moment about the body's center of mass and components of this net external moment (moment arms and ground reaction forces) during the double support and step execution phases of stepping. RESULTS In the double support phase, older participants exhibited smaller peak-to-peak ranges of H in the sagittal and transversal planes compared to their younger counterparts. These results were explained by decreased net external moments in both planes in the older participants. Conversely, during the step execution phase, older adults had higher peak-to-peak ranges of H in the frontal and sagittal planes compared to the younger adults. These higher ranges of H were associated with a longer duration of the step execution phase. Furthermore, in the sagittal plane, a higher external moment also contributed to increasing peak-to-peak ranges of H in older adults. CONCLUSION The current study revealed that older and younger adults exhibit different control strategies of H during initiation of stepping. The age-related changes, which may emphasize a higher difficulty to control H in the older adults, could impose a higher challenge for balance control and a potentially higher risk of falling during the step execution phase in this population.
Collapse
Affiliation(s)
- Jérémie Begue
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France.
| | - Nicolas Peyrot
- Le Mans Université, Movement - Interactions - Performance, MIP, EA 4334, F-72000 Le Mans, France; Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France
| | - Georges Dalleau
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France
| | - Teddy Caderby
- Laboratoire IRISSE - EA4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 117 rue du Général Ailleret, 97430 Le Tampon, Ile de la Réunion, France
| |
Collapse
|