1
|
Gimnich OA, Ortiz CB, Yang EY, Chen C, Virani SS, Kougias P, Lumsden AB, Morrisett JD, Ballantyne CM, Nambi V, Brunner G. Comparison of Longitudinal Skeletal Thigh Muscle Findings With Magnetic Resonance Imaging in Patients With Peripheral Artery Disease With-Versus-Without Diabetes Mellitus. Am J Cardiol 2022; 181:130-138. [PMID: 35999068 PMCID: PMC11600339 DOI: 10.1016/j.amjcard.2022.06.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
The aim of this secondary analysis of ELIMIT (The Effect of Lipid Modification on Peripheral Artery Disease after Endovascular Intervention Trial) was to determine longitudinal changes over 24 months in skeletal thigh muscle volumes and individual muscle compartments in patients with peripheral artery disease (PAD) with and without diabetes. A total of 48 patients with available magnetic resonance imaging of the distal superficial femoral artery at baseline and 2 years were included in this analysis. Muscle volumes and superficial femoral artery wall, lumen, and total vessel volumes were quantified. Intrareader reproducibility of muscle tracings was assessed with the intraclass correlation coefficient using a 2-way model. Baseline characteristics were similar between patients with PAD with and without diabetes, except for smoking history (p = 0.049), cholesterol levels (p <0.050), and calf walking pain (p = 0.049). Interobserver reproducibility of the muscle volume tracings was excellent for all muscle groups (all intraclass correlation coefficients >0.86, confidence interval 0.69 to 0.94). Total muscle and total leg volumes increased significantly between baseline and 24 months among patients with PAD without diabetes (31 ± 6.4 cm3 vs 32 ± 7.0 cm3, p <0.001; 18 ± 4.4 cm3 vs 19 ± 4.8 cm3, p = 0.045), whereas there was no change in patients with PAD and diabetes. Total muscle volume was inversely associated with age and body mass index in patients with PAD both with and without diabetes (p <0.05). In conclusion, magnetic resonance imaging-quantified thigh muscle volumes are highly reproducible and may be of interest in assessing PAD patients with and without diabetes.
Collapse
Affiliation(s)
- Olga A Gimnich
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Carlos B Ortiz
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Eric Y Yang
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Changyi Chen
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Salim S Virani
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, Texas; Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Panos Kougias
- Department of Surgery, Downstate Health Sciences University, Brooklyn, New York
| | - Alan B Lumsden
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Texas
| | - Joel D Morrisett
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Christie M Ballantyne
- Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Vijay Nambi
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, Texas; Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Gerd Brunner
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
2
|
Vastus lateralis muscle volume prediction in early-adolescent boys. J Biomech 2021; 128:110735. [PMID: 34536901 DOI: 10.1016/j.jbiomech.2021.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022]
Abstract
The applicability of a simplified approach for muscle volume assessment, based on multiplying muscle length, maximum anatomical cross-sectional area (ACSAmax) and a muscle-specific shape factor, was investigated in the present study for the vastus lateralis muscle of early-adolescent boys. Muscle length, ACSAmax and volume were calculated from magnetic resonance image muscle reconstructions of early-adolescent athletes (n = 14) and untrained peers (n = 10). A cohort-specific shape factor was obtained from the ratio of the measured volume and the product of ACSAmax and muscle length, which did not differ significantly between trained and untrained adolescents despite significant differences in anthropometry and muscle dimensions. Further, muscle volumes assessed based on the cohort-specific shape factor did not differ significantly from the measured muscle volumes with an average root mean square difference (RMS) of 4.6%. Muscle volumes assessed with a shape factor previously reported for the vastus lateralis of adults were however significantly higher in comparison to the measured muscle volumes (P < 0.001; RMS = 8.5%). These results indicate that a cohort-specific shape factor should be applied when assessing vastus lateralis muscle volume in early-adolescents as muscle development from childhood to adulthood seems to be accompanied by changes in muscle shape.
Collapse
|
3
|
Marzilger R, Bohm S, Mersmann F, Arampatzis A. Modulation of physiological cross-sectional area and fascicle length of vastus lateralis muscle in response to eccentric exercise. J Biomech 2020; 111:110016. [PMID: 32971492 DOI: 10.1016/j.jbiomech.2020.110016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
In the current study, we investigated the effect of lengthening velocity during eccentric exercise on the modulation of the physiological cross-sectional area (PCSA) and fascicle length of the vastus lateralis (VL) muscle. We hypothesized a greater increase in muscle PCSA after training with lower lengthening velocities and a greater increase in fascicle length after higher lengthening velocities. Forty-seven young men were randomly assigned to either a control (n = 14) or an intervention group (n = 33). The participants of the intervention group were randomly allocated to one of four isokinetic eccentric training protocols of the knee extensors, with four different knee angular velocities (45°/s, 120°/s, 210°/s and 300°/s), yet similar range of motion (25-100° knee joint angle), load magnitude (100% of isometric maximum) and load volume (i.e. similar time under tension for one training set). Before and after an 11-week training period with 3 times per week exercise, muscle volume, pennation angle, fascicle length and PCSA of the VL muscle were measured using magnetic resonance imaging and ultrasonography. After the training, the VL muscle volume and fascicle length increased similarly and approximately 5% in all investigated protocols. The PCSA and pennation angles of the VL did not change after any exercise protocol, indicating negligible radial muscle adaptation after the training. The reason for the found hypertrophy of VL muscle after eccentric training in a wide range of lengthening velocities was mainly a longitudinal muscle growth. Further, the longitudinal muscle growth was independent of the lengthening velocity.
Collapse
Affiliation(s)
- Robert Marzilger
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Germany; Berlin School of Movement Science, Humboldt-Universität zu Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Germany; Berlin School of Movement Science, Humboldt-Universität zu Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Germany; Berlin School of Movement Science, Humboldt-Universität zu Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Germany; Berlin School of Movement Science, Humboldt-Universität zu Berlin, Germany.
| |
Collapse
|
4
|
Mersmann F, Laube G, Bohm S, Arampatzis A. Muscle and Tendon Morphology in Early-Adolescent Athletes and Untrained Peers. Front Physiol 2020; 11:1029. [PMID: 32973557 PMCID: PMC7472460 DOI: 10.3389/fphys.2020.01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Adolescent athletes can feature significantly greater muscle strength and tendon stiffness compared to untrained peers. However, to date, it is widely unclear if radial muscle and tendon hypertrophy may contribute to loading-induced adaptation at this stage of maturation. The present study compares the morphology of the vastus lateralis (VL) and the patellar tendon between early-adolescent athletes and untrained peers. In 14 male elite athletes (A) and 10 untrained controls (UC; 12–14 years of age), the VL was reconstructed from full muscle segmentations of magnetic resonance imaging (MRI) sequences and ultrasound imaging was used to measure VL fascicle length and pennation angle. The physiological cross-sectional area (PCSA) of the VL was calculated by dividing muscle volume by fascicle length. The cross-sectional area (CSA) of the patellar tendon was measured over its length based on MRI segmentations as well. Considering body mass as covariate in the analysis, there were no significant differences between groups considering the VL anatomical cross-sectional area (ACSA) over its length or maximum ACSA (UC: 24.0 ± 8.3 cm2, A: 28.1 ± 5.3 cm2, p > 0.05), yet athletes had significantly greater VL volume (UC: 440 ± 147 cm3, A: 589 ± 121 cm3), PCSA (UC: 31 ± 9 cm2, A: 46 ± 9 cm2), pennation angle (UC: 8.2 ± 1.4°, A: 10.1 ± 1.3°), and average patellar tendon CSA (UC: 1.01 ± 0.18 cm2, A: 1.21 ± 0.18 cm2) compared to the untrained peers (p < 0.05). However, the ratio of average tendon CSA to VL PCSA was significantly lower in athletes (UC: 3.4 ± 0.1%, A: 2.7 ± 0.5%; p < 0.05). When inferring effects of athletic training based on the observed differences between groups, these results suggest that both muscle and tendon of the knee extensors respond to athletic training with radial growth. However, the effect seems to be stronger in the muscle compared to the tendon, with an increase of pennation angle contributing to the marked increase of muscle PCSA. A disproportionate response to athletic training might be associated with imbalances of muscle strength and tendon stiffness and could have implications for the disposition towards tendon overuse injury.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Laube
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Marzilger R, Bohm S, Mersmann F, Arampatzis A. Effects of Lengthening Velocity During Eccentric Training on Vastus Lateralis Muscle Hypertrophy. Front Physiol 2019; 10:957. [PMID: 31417420 PMCID: PMC6684750 DOI: 10.3389/fphys.2019.00957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/09/2019] [Indexed: 12/04/2022] Open
Abstract
Eccentric loading is an effective stimulus for muscle hypertrophy and strength gains, however, the effect of lengthening velocity is under debate. The purpose of the current study was to investigate the influence of muscle lengthening velocity during eccentric training on muscle hypertrophy and strength gains at a given overall loading volume. Forty-seven participants were randomly assigned to a control (n = 14, age: 26.9 ± 4.1 years) and an experimental group (n = 33, age: 27.1 ± 4.4 years). Each leg of the participants in the experimental group was randomly assigned to one of the four eccentric training protocols with different angular velocities (i.e., 45, 120, 210, and 300°/s). Both the magnitude of loading (100% of the isometric maximum) and overall time under tension was matched between the protocols. The training was performed for 33 sessions, 3 times per week with 5 training sets per session. Before and after the intervention, the maximum isometric knee extension moments were measured in all groups using dynamometry, vastus lateralis (VL) muscle anatomical cross-sectional area, and VL muscle volume were measured in the experimental group using magnetic resonance imaging. Data was analyzed in a mixed-design analysis of variance. After the training intervention, the maximum knee joint moments increased in the experimental group (14.2%, p < 0.05) but not the control group. VL anatomical cross-sectional area and VL muscle volume increased significantly (p < 0.05) in the experimental group (5.1 and 5.7%, respectively), but we did not find any significant differences between the four training protocols in all investigated parameters (p > 0.05). The present study provides evidence that muscle hypertrophy and strength gains after eccentric exercise is velocity-independent when load magnitude and overall time under tension are matched between conditions. This is likely due to the similar mechanical demand for the muscle induced by the loading conditions of all four training protocols. The better control of motion and the potentially decreased joint loading compared to high lengthening velocity contractions support the application of slow eccentric exercises in special populations like elderly and people with neurological and musculoskeletal diseases.
Collapse
Affiliation(s)
- Robert Marzilger
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|