1
|
Khorami F, Obaid N, Sparrey CJ. Sex differences in in vivo soft tissue compressive properties of the human hip in young adults: a comparison between passive vs active state. J Mech Behav Biomed Mater 2025; 165:106904. [PMID: 39954304 DOI: 10.1016/j.jmbbm.2025.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/06/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Hip injuries are a frequent outcome of falls. Studying the biomechanics of hip injuries requires a comprehensive understanding of soft tissue properties and their responses to external loads. Particularly, muscle activity is crucial in arresting a fall and is likely to affect soft tissue properties. Failing to consider muscle activation might result in incorrect conclusions regarding the processes underlying injuries and the efficacy of preventive strategies. Soft tissue response is also affected by loading rate, sex, and mechanical testing protocols, highlighting the need for precise experimental design and interpretation. Forty individuals (age = 25.53 ± 3.41 years) were recruited (20 males and 20 females) to investigate the hip soft tissue response during a high-speed cyclic indentation testing. Muscle activity was recorded using electromyography (EMG) and soft tissue thickness was measured using ultrasound imaging. Peak force, energy, and tissue stiffness were measured using tissue indentation. The hip soft tissue exhibited hysteresis and was nonlinear during loading. Sex differences in trochanteric soft tissue stiffness resulted in males having 38% higher peak force than females and absorbed energy was 32% higher in the active state than the passive state (in combined participants). Characterizing the range of tissue responses for in vivo hip soft tissues emphasizes the natural variability in healthy human tissues and the need to consider the range of tissue behaviors in models, not just the average response. Both sex and muscle activation increased tissue mechanical variability and need to be considered in future physical and computational models of hip impact.
Collapse
Affiliation(s)
- Fatemeh Khorami
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, V3T 0A3, Canada; International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Numaira Obaid
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, V3T 0A3, Canada; International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Carolyn J Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC, V3T 0A3, Canada; International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Chavan R, Kamble N, Kuthe C, Sarnobat S. On Mechanical Behavior and Characterization of Soft Tissues. Biomed Eng Comput Biol 2024; 15:11795972241294115. [PMID: 39494420 PMCID: PMC11531667 DOI: 10.1177/11795972241294115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
The growth and advancements done in solid mechanics and metallurgy have come up with various characterization techniques that help in prediction of elastic properties of different types of materials-isotropic, anisotropic, transverse isotropic, etc. Soft tissues which refer to fibrous tissues, fat, blood vessels, muscles and other tissues that support the body were found to have some control over its mechanical properties. This mechanical behavior of soft tissues has recently shifted the attention of many researchers to develop methods to characterize and describe the mechanical response of soft tissues. The paper discusses the biomechanical nature of soft tissues and the work done to characterize their elastic properties. The paper gives a review of the behavior and characteristics of soft tissues extracted from various experimental tests employed in their characterization. Soft tissues exhibit complex behavior and various complexities are involved in their experimental testing due to their small size and fragile nature. The paper focuses on the conventionally used tensile and compression tests and the difficulties encountered in soft tissue characterization. It also describes the utility of ultrasound technique which is a non-destructive method to characterize soft tissues. Tensile and compression test used to characterize materials are destructive in nature. Ultrasound technique can provide a better way to characterize material in a non-destructive manner.
Collapse
Affiliation(s)
- Radhika Chavan
- Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune, India
| | - Nitin Kamble
- Department of Robotics and Automation, D Y Patil College of Engineering, Akurdi, Pune, India
| | - Chetan Kuthe
- Department of Mechanical Engineering, Maharashtra Institute of Technology, Aurangabad, India
| | - Sandeep Sarnobat
- Department of Robotics and Automation, D Y Patil College of Engineering, Akurdi, Pune, India
| |
Collapse
|
3
|
Da Q, Xiao Y, Wu F, Chen Y, Li L. Does hip protector prevent falls and hip fractures? An umbrella review of meta-analyses. BMC Geriatr 2024; 24:514. [PMID: 38867191 PMCID: PMC11170778 DOI: 10.1186/s12877-024-05122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Wearing hip protectors is a measure used to prevent hip fractures caused by falls. However, its protective effect has remained controversial in previous studies. This study provides a rationale for the use of hip protectors by pooling all the current meta-analysis evidence. METHODS We conducted an umbrella review of all the current meta-analysis articles about the efficacy of hip protectors to reduce hip fractures and falls in communities and/or institutions. Major databases including EMBASE, Cochrane Library, PubMed and Web of Science, were searched up to June 2022. Two reviewers screened the studies, extracted the data, and conducted the methodological quality assessment independently. The primary outcome was the association statistic (odds ratio (OR), relative risk (RR), etc.) reported in the meta-analysis that quantified the influence of the intervention on hip fractures and falls compared to that of the control group. Narrative synthesis was also conducted. Forest plots and the AMSTAR score were used to describe the results and quality of the pooled literature, respectively. RESULTS A total of six meta-analysis articles were included in the study. Hip protectors were effective at reducing hip fractures in older individuals who were in institutions (nursing or residential care settings) but not in communities (RR = 0.70, 95% CI 0.58 to 0.85, I2 = 42%, P < 0.001) (RR = 1.12, 95% CI 0.94 to 1.34, I2 = 0%, P = 0.20), and they did not reduce falls (RR = 1.01, 95% CI 0.90 to 1.13, I2 = 0%, P = 0.89). CONCLUSIONS Hip protectors are effective at preventing hip fractures in institutionalized older adults but not in community-dwelling older adults. TRIAL REGISTRATION This study has been registered in PROSPERO (PROSPERO ID: CRD42022351773).
Collapse
Affiliation(s)
- Qingchen Da
- School of Public Health, Shantou University, Shantou, 515041, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Yingheng Xiao
- School of Public Health, Shantou University, Shantou, 515041, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Feng Wu
- School of Public Health, Shantou University, Shantou, 515041, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Yueliang Chen
- School of Public Health, Shantou University, Shantou, 515041, China
- Injury Prevention Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Liping Li
- School of Public Health, Shantou University, Shantou, 515041, China.
- Injury Prevention Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
4
|
Zhang Y, Wang Z, Sun Q, Li Q, Li S, Li X. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5161. [PMID: 37512435 PMCID: PMC10386333 DOI: 10.3390/ma16145161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The extracellular matrix (ECM) of natural cells typically exhibits dynamic mechanical properties (viscoelasticity and dynamic stiffness). The viscoelasticity and dynamic stiffness of the ECM play a crucial role in biological processes, such as tissue growth, development, physiology, and disease. Hydrogels with viscoelasticity and dynamic stiffness have recently been used to investigate the regulation of cell behavior and fate. This article first emphasizes the importance of tissue viscoelasticity and dynamic stiffness and provides an overview of characterization techniques at both macro- and microscale. Then, the viscoelastic hydrogels (crosslinked via ion bonding, hydrogen bonding, hydrophobic interactions, and supramolecular interactions) and dynamic stiffness hydrogels (softening, stiffening, and reversible stiffness) with different crosslinking strategies are summarized, along with the significant impact of viscoelasticity and dynamic stiffness on cell spreading, proliferation, migration, and differentiation in two-dimensional (2D) and three-dimensional (3D) cell cultures. Finally, the emerging trends in the development of dynamic mechanical hydrogels are discussed.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuofan Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Effects of hip muscle activation on the stiffness and energy absorption of the trochanteric soft tissue during impact in sideways falls. J Mech Behav Biomed Mater 2023; 138:105622. [PMID: 36538838 DOI: 10.1016/j.jmbbm.2022.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The trochanteric soft tissue attenuates impact force or absorbs impact energy during a fall on the hip (thereby helps to reduce a risk of hip fracture). While the benefits should be affected by contractions of muscles spanning the hip joint, no information is available to date. We examined how the stiffness (force attenuation capacity) and energy absorption of the trochanteric soft tissue were affected by hip muscle activation during a fall. Thirteen healthy young individuals (5 males, 8 females) participated in the pelvis release experiment. Falling trials were acquired with three muscle contraction conditions: 0-20% ("relaxed"), 20-50% ("moderate"), and 60-100% ("maximal") of the maximal voluntary isometric contraction of the gluteus medius muscle. During trials, we measured real-time force and deformation behaviour of the trochanteric soft tissue. Outcome variables included the stiffness and energy absorption of the soft tissue. The stiffness and energy absorption ranged from 56.1 to 446.9 kN/m, and from 0.15 to 2.26 J, respectively. The stiffness value increased with muscle contraction, and 59% greater in "maximal" than "relaxed" condition (232.2 (SD = 121.4) versus 146.1 (SD = 49.9)). However, energy absorption decreased with muscle contraction, and 58.9% greater in "relaxed" than "maximal" condition (0.89 (SD = 0.63) versus 0.56 (SD = 0.41)). Our results provide insights on biomechanics of the trochanteric soft tissue ("natural" padding device) during impact stage of a fall, suggesting that soft tissues' protective benefits are largely affected by the level of muscle contraction.
Collapse
|
6
|
Liu F, Chang WJ, Wang X, Gong R, Yuan DT, Zhang YK, Xie WP. Risk factors for prolonged preoperative waiting time of intertrochanteric fracture patients undergoing operative treatment. BMC Musculoskelet Disord 2022; 23:912. [PMID: 36229805 PMCID: PMC9559870 DOI: 10.1186/s12891-022-05865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Intertrochanteric fracture is a common fracture in older adults. We observed the case characteristics of intertrochanteric fracture and analyzed the risk factors for prolonged preoperative waiting time based on patient data from a 6 year period. Investigate the post-admission treatment of intertrochanteric fracture. Methods We retrospectively reviewed the medical records from July 2015 to July 2021 of patients hospitalized for intertrochanteric fracture who had undergone internal fixation surgery in the orthopedic ward of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine. Data regarding gender, age, AO/OTA classification, preoperative waiting time, preoperative medical comorbidities, and complicated deep venous thrombosis (DVT) of lower limbs were collected. Statistical tests were used to evaluate the factors influencing preoperative preparation time and DVT. Results A total of 1812 cases were retrospectively analyzed, 1258 patients (69.43%) had three or more medical comorbidities. The average preoperative waiting time was 5.09 ± 3.27 days. Advanced age, more preoperative medical comorbidities and DVT led to longer preoperative waiting times, and preoperative medical comorbidities were an independent risk factor. Patients with advanced age and preoperative medical comorbidities were more likely to have DVT. Conclusion Age and preoperative medical comorbidities are risk factors for DVT and prolonged preoperative preparation time in intertrochanteric fracture patients. Preoperative medical comorbidities are an independent risk factors affecting the preoperative waiting time, and a combination of multiple comorbidities almost predicts the delay of the operation time.
Collapse
Affiliation(s)
- Fei Liu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Jie Chang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Gong
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dao-Tong Yuan
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Kui Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, 250014, Jinan, Shandong, China. .,Shandong Fupai Pharmaceutical Co., Ltd, Jinan, Shandong, China.
| | - Wen-Peng Xie
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, 250014, Jinan, Shandong, China.
| |
Collapse
|
7
|
Femur geometry and body composition influence femoral neck stresses: A combined fall simulation and beam modelling approach. J Biomech 2022; 141:111192. [PMID: 35764013 DOI: 10.1016/j.jbiomech.2022.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
Metrics of femur geometry and body composition have been linked to clinical hip fracture risk. Mechanistic explanations for these relationships have generally focused on femur strength; however, impact loading also modulates fracture risk. We evaluated the potential effects of femur geometry and body composition on femoral neck stresses during lateral impacts. Fifteen female volunteers completed low-energy sideways falls on to the hip. Additionally, participants completed ultrasound and dual-energy x-ray absorptiometry imaging to characterize trochanteric soft tissue thickness (TSTT) over the hip and six metrics of femur geometry, respectively. Subject-specific beam models were developed and utilized to calculate peak femoral neck stress (σNeck), utilizing experimental impact dynamics. Except for femoral neck axis length, all metrics of femur geometry were positively correlated with σNeck (all p < 0.05). Larger/more prominent proximal femurs were associated with increased force over the proximal femur, whereas a wider neck-shaft angle was associated with greater stress generation independent of force (all p < 0.05). Body mass index (BMI) and TSTT were negatively correlated with σNeck (both p < 0.05). Despite strong correlations, these metrics of body composition appear to influence femoral neck stresses through different mechanisms. Increased TSTT was associated with reduced force over the proximal femur, whereas increased BMI was associated with greater resistance to stress generation (both p < 0.05). This study provided novel insights into the mechanistic pathways through which femur geometry and body composition may modulate hip fracture risk. Our findings complement clinical findings and provide one possible explanation for incongruities in the clinical fracture risk and femur strength literature.
Collapse
|
8
|
Understanding Sex-Based Kinematic and Kinetic Differences of Chasse-Step in Elite Table Tennis Athletes. Bioengineering (Basel) 2022; 9:bioengineering9060246. [PMID: 35735489 PMCID: PMC9219934 DOI: 10.3390/bioengineering9060246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022] Open
Abstract
With the progress and innovation of table tennis technology, individualized training programs may deserve special attention. This study aimed to analyze elite table tennis athletes in chasse-step, with a particular focus on sex-based biomechanical differences. A total of 36 (18 males and 18 females) elite table tennis athletes performed topspin forehand of chasse-step. Angles and moments of hip, knee, and ankle joints were calculated using OpenSim (v4.2) with marker trajectories and ground reaction forces were measured via Vicon motion capture system and AMTI in-ground force platform. Males had greater hip and knee flexion angles during the entire motion phase and greater internal rotation angles of the hip during the forward swing phase. The joint stiffness of knee in males was greater than females in the frontal plane. Females in the forward swing phase showed greater hip flexion, adduction, and internal rotation moments than males. It was suggested that the difference may be due to the limitation of anatomical structures in sexes. Male table tennis athletes should strengthen lower extremity muscle groups to improve performance, while female table tennis athletes should focus on hip joint groups to avoid injury. The sex differences presented in this study could help coaches and athletes to develop individualized training programs for table tennis.
Collapse
|
9
|
The Effects of Body Position on Trochanteric Soft Tissue Thickness-Implications for Predictions of Impact Force and Hip Fracture Risk During Lateral Falls. J Appl Biomech 2021; 37:556-564. [PMID: 34784585 DOI: 10.1123/jab.2020-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/28/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Trochanteric soft tissue thickness (TSTT) is a protective factor against fall-related hip fractures. This study's objectives were to determine: (1) the influence of body posture on TSTT and (2) the downstream effects of TSTT on biomechanical model predictions of fall-related impact force (Ffemur) and hip fracture factor of risk. Ultrasound was used to measure TSTT in 45 community-dwelling older adults in standing, supine, and side-lying positions with hip rotation angles of -25°, 0°, and 25°. Supine TSTT (mean [SD] = 5.57 [2.8] cm) was 29% and 69% greater than in standing and side-lying positions, respectively. The Ffemur based on supine TSTT (3380 [2017] N) was 19% lower than the standing position (4173 [1764] N) and 31% lower than the side-lying position (4908 [1524] N). As factor of risk was directly influenced by Ffemur, the relative effects on fracture risk were similar. While less pronounced (<10%), the effects of hip rotation angle were consistent across TSTT, Ffemur, and factor of risk. Based on the sensitivity of impact models to TSTT, these results highlight the need for a standardized TSTT measurement approach. In addition, the consistent influence of hip rotation on TSTT (and downstream model predictions) support its importance as a factor that may influence fall-related hip fracture risk.
Collapse
|
10
|
Pretty SP, Levine IC, Laing AC. Anatomically Aligned Loading During Falls: Influence of Fall Protocol, Sex and Trochanteric Soft Tissue Thickness. Ann Biomed Eng 2021; 49:3267-3279. [PMID: 34494215 DOI: 10.1007/s10439-021-02852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
Fall simulations provide insight into skin-surface impact dynamics but have focused on vertical force magnitude. Loading direction and location (relative to the femur) likely influence stress generation. The current study characterized peak impact vector magnitude, orientation, and center of pressure over the femur during falls, and the influence of biological sex and trochanteric soft tissue thickness (TSTT). Forty young adults completed fall simulations including a vertical pelvis release, as well as kneeling and squat releases, which incorporate lateral/rotational motion. Force magnitude and direction varied substantially across fall simulations. Kneeling and squat releases elicited 57.4 and 38.8% greater force than pelvis release respectively, with differences accentuated in males. With respect to the femoral shaft, kneeling release had the most medially and squat release the most distally directed loading vectors. Across all fall simulations, sex and TSTT influenced force magnitude and center of pressure. Force was 28.0% lower in females and was applied more distally than in males. Low-TSTT participants had 16.8% lower force, applied closer to the greater trochanter than high-TSTT participants. Observed differences in skin-surface impact dynamics likely interact with underlying femur morphology to influence stress generation. These data should serve as inputs to tissue-level computational models assessing fracture risk.
Collapse
Affiliation(s)
- Steven P Pretty
- Injury Biomechanics and Aging Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Iris C Levine
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 13-000, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Andrew C Laing
- Injury Biomechanics and Aging Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
11
|
Lim KT, Choi WJ. The effect of the hip impact configuration on the energy absorption provided by the femoral soft tissue during sideways falls. J Biomech 2021; 117:110254. [PMID: 33493711 DOI: 10.1016/j.jbiomech.2021.110254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/12/2020] [Accepted: 01/10/2021] [Indexed: 12/26/2022]
Abstract
The femoral soft tissue (i.e., skin, muscle, fat) may play a key role in preventing hip fractures during a fall by absorbing the impact energy. We measured the femoral soft tissue deformation and associated compressive force during simulated sideways falls to estimate the energy absorbed by the soft tissue, and then examined how this was affected by the hip impact configuration and gender. Eighteen young adults (9 males and 9 females) participated in the pelvis release experiment. The pelvis was raised through a rope attached to an electromagnet on the ceiling, so the skin surface barely touches the ultrasound probe, which flush to a Plexiglas plate placed on a force plate. The electromagnet was turned off to cause a fall while the soft tissue deformation and associated compressive force were being recorded. Trials were acquired with three hip impact configurations. An outcome variable included the energy absorbed by the femoral soft tissue during a fall. The energy absorbed by the femoral soft tissue ranged from 0.03 to 3.05 J. Furthermore, the energy absorption was associated with the hip impact configuration (F = 4.69, p = 0.016). On average, the absorbed energy was 62% greater in posteriolateral than anteriolateral impact (0.92 versus 0.57 J). However, the energy absorption did not differ between male and female (F = 0.91, p = 0.36). The force-deflection behavior of the femoral soft tissue during a fall has been recorded, providing insights on the potential protective benefits of the soft tissue covering during a fall.
Collapse
Affiliation(s)
- Ki Taek Lim
- Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University, Wonju, South Korea
| | - Woochol Joseph Choi
- Injury Prevention and Biomechanics Laboratory, Department of Physical Therapy, Yonsei University, Wonju, South Korea.
| |
Collapse
|