1
|
Fuentes-Abolafio IJ, Trinidad-Fernández M, Escriche-Escuder A, Roldán-Jiménez C, Arjona-Caballero JM, Bernal-López MR, Ricci M, Gómez-Huelgas R, Pérez-Belmonte LM, Cuesta-Vargas AI. Kinematic Parameters That Can Discriminate in Levels of Functionality in the Six-Minute Walk Test in Patients with Heart Failure with a Preserved Ejection Fraction. J Clin Med 2022; 12:241. [PMID: 36615043 PMCID: PMC9821146 DOI: 10.3390/jcm12010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
It is a challenge to manage and assess heart failure with preserved left ventricular ejection fraction (HFpEF) patients. Six-Minute Walk Test (6MWT) is used in this clinical population as a functional test. The objective of the study was to assess gait and kinematic parameters in HFpEF patients during the 6MWT with an inertial sensor and to discriminate patients according to their performance in the 6MWT: (1) walk more or less than 300 m, (2) finish or stop the test, (3) women or men and (4) fallen or did not fall in the last year. A cross-sectional study was performed in patients with HFpEF older than 70 years. 6MWT was carried out in a closed corridor larger than 30 m. Two Shimmer3 inertial sensors were used in the chest and lumbar region. Pure kinematic parameters analysed were angular velocity and linear acceleration in the three axes. Using these data, an algorithm calculated gait kinematic parameters: total distance, lap time, gait speed and step and stride variables. Two analyses were done according to the performance. Student’s t-test measured differences between groups and receiver operating characteristic assessed discriminant ability. Seventy patients performed the 6MWT. Step time, step symmetry, stride time and stride symmetry in both analyses showed high AUC values (>0.75). More significant differences in velocity and acceleration in the maximum Y axis or vertical movements. Three pure kinematic parameters obtained good discriminant capacity (AUC > 0.75). The new methodology proved differences in gait and pure kinematic parameters that can distinguish two groups according to the performance in the 6MWT and they had discriminant capacity.
Collapse
Affiliation(s)
- Iván José Fuentes-Abolafio
- Grupo de Investigación Clinimetría F-14, Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
| | - Manuel Trinidad-Fernández
- Grupo de Investigación Clinimetría F-14, Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
| | - Adrian Escriche-Escuder
- Grupo de Investigación Clinimetría F-14, Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
| | - Cristina Roldán-Jiménez
- Grupo de Investigación Clinimetría F-14, Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
| | - José María Arjona-Caballero
- Grupo de Investigación Clinimetría F-14, Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
| | - M. Rosa Bernal-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
- Departamento de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- CIBER Fisio-Patología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Michele Ricci
- Departamento de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Ricardo Gómez-Huelgas
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
- Departamento de Medicina Interna, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- CIBER Fisio-Patología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Miguel Pérez-Belmonte
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
- Unidad de Neurofisiología Cognitiva, Centro de Investigaciones Médico Sanitarias (CIMES), Universidad de Málaga (UMA), Campus de Excelencia Internacional (CEI) Andalucía Tech, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Ignacio Cuesta-Vargas
- Grupo de Investigación Clinimetría F-14, Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA), Plataforma Bionand, 29590 Málaga, Spain
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Feng Q, Feng Z, Su X. Design and Simulation of Human Resource Allocation Model Based on Double-Cycle Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7149631. [PMID: 34733325 PMCID: PMC8560275 DOI: 10.1155/2021/7149631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
The rationalization of human resource management is helpful for enterprises to efficiently train talents in the field, improve the management mode, and increase the overall resource utilization rate of enterprises. The current computational models applied in the field of human resources are usually based on statistical computation, which can no longer meet the processing needs of massive data and do not take into account the hidden characteristics of data, which can easily lead to the problem of information scarcity. The paper combines recurrent convolutional neural network and traditional human resource allocation algorithm and designs a double recurrent neural network job matching recommendation algorithm applicable to the human resource field, which can improve the traditional algorithm data training quality problem. In the experimental part of the algorithm, the arithmetic F1 value in the paper is 0.823, which is 20.1% and 7.4% higher than the other two algorithms, respectively, indicating that the algorithm can improve the hidden layer features of the data and then improve the training quality of the data and improve the job matching and recommendation accuracy.
Collapse
Affiliation(s)
- Qi Feng
- Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Zixuan Feng
- Hongkong Shue Yan University, Hongkong 999077, China
| | - Xingren Su
- Panzhihua University, Panzhihua 617000, Sichuan, China
| |
Collapse
|