1
|
Khandare S, Smallcomb M, Elliott J, Vidt ME, Simon JC. Focused ultrasound as an alternative to dry needling for the treatment of tendinopathies: A murine model. J Orthop Res 2024; 42:598-606. [PMID: 37804211 PMCID: PMC10932869 DOI: 10.1002/jor.25700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Tendinopathies account for 30% of 102 million annual musculoskeletal injuries occurring annually in the United States. Current treatments, like dry needling, induce microdamage to promote healing but produce mixed success rates. Previously, we showed focused ultrasound can noninvasively create microdamage while preserving mechanical properties in ex vivo murine tendons. This present study compared growth factor, histological, and mechanical effects after focused ultrasound or dry needling treatments in an in vivo murine tendon injury model. Partial Achilles tenotomy was performed in 26 rats. One-week postsurgery, tendons were treated with focused ultrasound (1.5 MHz, 1-ms pulses at 10 Hz for 106 s, p+ = 49 MPa, p- = 19 MPa) or dry needling (30 G needle, 5 fenestrations over 20 s) and survived for 1 additional week. Blood was collected immediately before and after treatment and before euthanasia; plasma was assayed for growth factors. Treated tendons and contralateral controls were harvested for histology or mechanical testing. No differences were found between treatments in release of insulin growth factor 1 and transforming growth factor beta; vascular endothelial growth factor A concentrations were too low for detection. Histologically, focused ultrasound and dry needling tendons displayed localized fibroblast infiltration without collagen proliferation with no detectable differences between treatments. Mechanically, stiffness and percent relaxation of dry needling tendons were lower than controls (p = 0.0041, p = 0.0441, respectively), whereas stiffness and percent relaxation of focused ultrasound tendons were not different from controls. These results suggest focused ultrasound should be studied further to determine how this modality can be leveraged as a therapy for tendinopathies.
Collapse
Affiliation(s)
- Sujata Khandare
- Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Molly Smallcomb
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA USA
| | - Jacob Elliott
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA USA
| | - Meghan E. Vidt
- Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Physical Medicine and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Julianna C. Simon
- Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
2
|
Smallcomb M, Simon JC. Dual-frequency boiling histotripsy in an ex vivo bovine tendinopathy model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:3182. [PMID: 37279386 PMCID: PMC10247224 DOI: 10.1121/10.0019630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Histotripsy fractionates most soft tissues; however, healthy tendons have shown resistance to histotripsy fractionation. Prior work has shown that pre-heating tendons increases susceptibility to histotripsy fractionation; combining multiple driving frequencies may also allow successful fractionation of tendons. Here, we evaluate single- and dual-frequency histotripsy in four healthy and eight tendinopathic ex vivo bovine tendons. First, we evaluated single-frequency (1.07, 1.5, and 3.68 MHz) and dual-frequency (1.07 and 1.5 MHz or 1.5 and 3.68 MHz) bubble dynamics with high-speed photography in a tissue-mimicking phantom. Then, tendons were treated with histotripsy. Cavitation activity was monitored with a passive cavitation detector (PCD) and targeted areas were evaluated grossly and histologically. Results in tendinopathic tendons showed 1.5 MHz or 3.68 MHz single-frequency exposure caused focal disruption, whereas 1.5 and 3.68 MHz dual-frequency exposures caused fractionated holes; all treatments caused some thermal denaturation. Exposure to 1.07 MHz alone or combined with 1.5 MHz did not show fractionation in tendinopathic tendons. In healthy tendons, only thermal necrosis was observed for all tested exposures. PCD showed some differences in cavitation activity in tendinopathic tendons but did not predict successful fractionation. These results suggest that full histotripsy fractionation is possible using dual-frequency exposures in tendinopathic tendons.
Collapse
Affiliation(s)
- Molly Smallcomb
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Smallcomb M, Simon JC. High intensity focused ultrasound atomization and erosion in healthy and tendinopathic tendons. Phys Med Biol 2023; 68:10.1088/1361-6560/aca9b7. [PMID: 36595243 PMCID: PMC10122516 DOI: 10.1088/1361-6560/aca9b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Objective.High-intensity focused ultrasound (HIFU) can induce thermal and mechanical mechanisms in a well-defined focal volume of tissues. Histotripsy is a form of mechanical HIFU that can initiate and interact with bubble(s) to cause shock scattering and perhaps atomization within the bubble(s) to fractionate most soft tissues. Ultrasonic atomization, or the ejection of fine droplets from an acoustically-excited liquid exposed to air, has been shown to erode planar soft tissue surfaces, which has led to theories that atomization is a mechanism in histotripsy. However, healthy tendons show resistance to conventional histotripsy; pre-treatment of tendons with heat increases susceptibility to histotripsy fractionation. This study investigates ultrasonic atomization and erosion from planar healthy and tendinopathic tendon surfaces as we evaluate HIFU parameters for histotripsy in tendons.Approach.Forty-sixex vivobovine tendon-air interfaces were pre-conditioned to surface wetting, heat baths of 20 °C (unaltered), 37 °C (body temperature), and 58 °C (collagen degradation), collagenase soaks for 1, 3, 5, and 24 h (mimicking tendinopathic tendons), and phosphate buffered saline soaks for 24 h. Ejected fragments, histology, and gross analysis determined erosion success. Tissue displacement from the HIFU radiation force was monitored with high-speed photography, and tissue relaxation was pixel-tracked and fit to a Kelvin-Voigt model to evaluate changes in viscoelastic properties.Main results.Results showed that atomization produced holes in 24 h collagenase tendons and surface pitting in 58 °C, 3 h, and 5 h collagenase tendons. Increased mound heights and viscoelastic constants in pre-heated (to 58 °C) and collagenase-soaking (3+ hours) tendinopathic models caused a decrease in elasticity and/or increase in viscosity, increasing susceptibility to erosion by HIFU atomization.Significance.Therefore, tendons with chronic tendinopathies may be more susceptible than healthy tendons to histotripsy fractionation.
Collapse
Affiliation(s)
- Molly Smallcomb
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, United States of America
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
4
|
Elliott J, Khandare S, Butt AA, Smallcomb M, Vidt ME, Simon JC. Automated Tissue Strain Calculations Using Harris Corner Detection. Ann Biomed Eng 2022; 50:564-574. [PMID: 35334018 DOI: 10.1007/s10439-022-02946-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
The elastic modulus, or slope of the stress-strain curve, is an important metric for evaluating tissue functionality, particularly for load-bearing tissues such as tendon. The applied force can be tracked directly from a mechanical testing system and converted to stress using the tissue cross-sectional area; however, strain can only be calculated in post-processing by tracking tissue displacement from video collected during mechanical testing. Manual tracking of Verhoeff stain lines pre-marked on the tissue is time-consuming and highly dependent upon the user. This paper details the development and testing of an automated processing method for strain calculations using Harris corner detection. The automated and manual methods were compared in a dataset consisting of 97 rat tendons (48 Achilles tendons, 49 supraspinatus tendons), divided into ten subgroups for evaluating the effects of different therapies on tendon mechanical properties. The comparison showed that average percent differences between the approaches were 0.89% and -2.10% for Achilles and supraspinatus tendons, respectively. The automated approach reduced processing time by 83% and produced similar results to the manual method when comparing the different subgroups. This automated approach to track tissue displacements and calculate elastic modulus improves post-processing time while simultaneously minimizing user dependency.
Collapse
Affiliation(s)
- Jake Elliott
- Graduate Program in Acoustics, Pennsylvania State University, 201E Applied Science Building, University Park, PA, 16802, USA.
| | - Sujata Khandare
- Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Ali A Butt
- Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Molly Smallcomb
- Graduate Program in Acoustics, Pennsylvania State University, 201E Applied Science Building, University Park, PA, 16802, USA
| | - Meghan E Vidt
- Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.,Physical Medicine & Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, Pennsylvania State University, 201E Applied Science Building, University Park, PA, 16802, USA.,Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Effects of focused ultrasound and dry needling on tendon mechanical properties. J Biomech 2022; 132:110934. [PMID: 34995989 PMCID: PMC8860888 DOI: 10.1016/j.jbiomech.2021.110934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 02/03/2023]
Abstract
Tendon injuries are extremely common, resulting in mechanically weaker tendons that could lead to tendon rupture. Dry needling (DN) is widely used to manage pain and function after injury. However, DN is invasive and high inter-practitioner variability has led to mixed success rates. Focused ultrasound (fUS) is a non-invasive medical technology that directs ultrasound energy into a well-defined focal volume. fUS can induce thermal ablation or mechanical fractionation, with bioeffect type controlled through ultrasound parameters. Tendons must withstand high physiological loads, thus treatments maintaining tendon mechanical properties while promoting healing are needed. Our objective was to evaluate mechanical effects of DN and 3 fUS parameter sets, chosen to prioritize mechanical fractionation, on Achilles and supraspinatus tendons. Ex vivo rat Achilles and supraspinatus tendons (50 each) were divided into sham, DN, fUS-1, fUS-2, and fUS-3 (n = 10/group). Following treatment, tendons were mechanically tested. Elastic modulus of supraspinatus tendons treated with DN (126.64 ± 28.1 MPa) was lower than sham (153.02 ± 29.3 MPa; p = 0.0280). Stiffness and percent relaxation of tendons treated with DN (Achilles: 114.40 ± 31.6 N/mm; 49.10 ± 6.1%; supraspinatus: 109.53 ± 30.8 N/mm; 50.17 ± 7.6%) were lower (all p < 0.0334) than sham (Achilles: 141.34 ± 20.9 N/mm; 60.30 ± 7.7%; supraspinatus: 135.14 ± 30.2 N/mm; 60.85 ± 15.4%). Modulus of Achilles and supraspinatus tendons treated with fUS-1 (159.88 ± 25.7 MPa; 150.12 ± 22.0 MPa, respectively) were similar to sham (156.35 ± 23.0 MPa; 153.02 ± 29.3 MPa, respectively). These results suggest that fUS preserves mechanical properties better than DN, with fUS-1 performing better than fUS-2 and fUS-3. fUS should be studied further to fully understand its mechanical and healing effects to help evaluate fUS as an alternative, non-invasive treatment for tendon injuries.
Collapse
|
6
|
Smallcomb M, Elliott J, Khandare S, Butt AA, Vidt ME, Simon JC. Focused Ultrasound Mechanical Disruption of Ex Vivo Rat Tendon. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2981-2986. [PMID: 33891552 PMCID: PMC8547257 DOI: 10.1109/tuffc.2021.3075375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Around 30 million tendon injuries occur annually in the U.S. costing $ 114 billion. Conservative therapies, like dry needling, promote healing in chronically injured tendons by inducing microdamage but have mixed success rates. Focused ultrasound (fUS) therapy can noninvasively fractionate tissues through the creation, oscillation, and collapse of bubbles in a process termed histotripsy; however, highly collagenous tissues, like tendon, have shown resistance to mechanical fractionation. This study histologically evaluates whether fUS mechanical disruption is achievable in tendons. Ex vivo rat tendons (45 Achilles and 44 supraspinatus) were exposed to 1.5-MHz fUS operating with 0.1-10 ms pulses repeated at 1-100 Hz for 15-60 s with peak positive pressures <89 MPa and peak negative pressures <26 MPa; other tendons were exposed to dry needling or sham. Immediately after treatment, tendons were flash-frozen and stained with hematoxylin and eosin (H&E) or alpha-nicotinamide adenine dinucleotide diaphorase ( α -NADH-d) and evaluated by two reviewers blinded to the exposure conditions. Results showed successful creation of bubbles for all fUS-treated samples; however, not all samples showed histological injury. When the injury was detected, parameter sets with shorter pulses (0.1-1 ms), lower acoustic pressures, or reduced treatment times showed mechanical disruption in the form of fiber separation and fraying with little to no thermal injury. Longer pulses or treatment times showed a combination of mechanical and thermal injury. These findings suggest that mechanical disruption is achievable in tendons within a small window of acoustic parameters, supporting the potential of fUS therapy in tendon treatment.
Collapse
|