1
|
Zhao Y, Zhou J, Qiu F, Liao X, Jiang J, Chen H, Lin X, Hu Y, He J, Chen J. A deep learning method for foot-type classification using plantar pressure images. Front Bioeng Biotechnol 2023; 11:1239246. [PMID: 37767108 PMCID: PMC10519788 DOI: 10.3389/fbioe.2023.1239246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Flat foot deformity is a prevalent and challenging condition often leading to various clinical complications. Accurate identification of abnormal foot types is essential for appropriate interventions. Method: A dataset consisting of 1573 plantar pressure images from 125 individuals was collected. The performance of the You Only Look Once v5 (YOLO-v5) model, improved YOLO-v5 model, and multi-label classification model was evaluated for foot type identification using the collected images. A new dataset was also collected to verify and compare the models. Results: The multi-label classification algorithm based on ResNet-50 outperformed other algorithms. The improved YOLO-v5 model with Squeeze-and-Excitation (SE), the improved YOLO-v5 model with Convolutional Block Attention Module (CBAM), and the multilabel classification model based on ResNet-50 achieved an accuracy of 0.652, 0.717, and 0.826, respectively, which is significantly higher than those obtained using the ordinary plantar-pressure system and the standard YOLO-v5 model. Conclusion: These results indicate that the proposed DL-based multilabel classification model based on ResNet-50 is superior in flat foot type detection and can be used to evaluate the clinical rehabilitation status of patients with abnormal foot types and various foot pathologies when more data on patients with various diseases are available for training.
Collapse
Affiliation(s)
- Yangyang Zhao
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jiali Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Fei Qiu
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xuying Liao
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianhua Jiang
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Heqing Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaomei Lin
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianquan He
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jian Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Uhan J, Kothari A, Zavatsky A, Stebbins J. Using surface markers to describe the kinematics of the medial longitudinal arch. Gait Posture 2023; 102:118-124. [PMID: 37003196 DOI: 10.1016/j.gaitpost.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Static and dynamic assessment of the medial longitudinal arch (MLA) is an essential aspect for measuring foot function in both clinical and research fields. Despite this, most multi-segment foot models lack the ability to directly track the MLA. This study aimed to assess various methods of MLA assessment, through motion capture of surface markers on the foot during various activities. METHODS Thirty general population participants (mean age 20 years) without morphological alterations to their feet underwent gait analysis. Eight measures, each representing a unique definition of the MLA angle using either real only, or both real and floor-projected markers, were created. Participants performed tasks including standing, sitting, heel lift, Jack's test and walking, and had their Arch Height Index (AHI) measured using callipers. Multiple-criteria decision analysis (MCDA) with 10 criteria was utilised for selecting the optimal measure for dynamic and static MLA assessment. RESULTS In static tasks, the standing MLA angle was significantly greater in all measures but one when compared to sitting, Jack's test and heel lift. The MLA angle in Jack's test was significantly greater than in heel lift in all measures. Across the compared dynamic tasks, significant differences were noted in all measures except one for foot strike in comparison to 50% gait cycle. All MLA measures held significant inverse correlations with MLA measured from static and dynamic tasks. Based on MCDA criteria, a measure comprising the first metatarsal head, fifth metatarsal base, navicular and heel markers was deemed the best for MLA assessment. SIGNIFICANCE This study aligns with the current literature recommendations for the use of a navicular marker for characterising the MLA. It contrasts with previous recommendations and advocates against the use of projected markers in most situations.
Collapse
Affiliation(s)
- Jerneja Uhan
- Department of NDORMS, University of Oxford, Oxford, UK.
| | - Alpesh Kothari
- Department of NDORMS, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amy Zavatsky
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Julie Stebbins
- Department of NDORMS, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
3
|
Manfredi-Márquez MJ, Tavara-Vidalón SP, Tavaruela-Carrión N, Gómez Benítez MÁ, Fernandez-Seguín LM, Ramos-Ortega J. Study of Windlass Mechanism in the Lower Limb Using Inertial Sensors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3220. [PMID: 36833915 PMCID: PMC9962886 DOI: 10.3390/ijerph20043220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
AIMS This study aimed to quantify the degrees of movement that occur in the lower limb using a kinematic system after taking two measurements of 45° and 60° of extension at the first metatarsophalangeal joint (1st MTPJ) and to test the validity of this sensor system using radiography. METHODOLOGY This was a quasi-experimental test-post-test study with a single intervention group (25 subjects). Four inertial sensors were placed on the proximal phalange of the first toe, dorsum of the foot, medial-lateral of the leg (level of tibia), and medial-lateral of the thigh (level of femur). The extension of the 1st MTPJ produced movements of supination in the foot and rotation at the level of leg and thigh. We studied this mechanism in three situations (relaxed, 45°, and 60°) both with the sensors and with X-rays. RESULTS With the kinematic system, there was an increase in the range of movement in each of the variables, with a value of p < 0.05. The relationship between the kinematic system and the radiography was tested using Spearman's rho test, obtaining a correlation coefficient of 0.624 and a value of p < 0.05, and the Bland-Altman graph, with 90% of the cases within the tolerance limits. CONCLUSIONS The extension of the 1st MTPJ generated kinematic changes associated with supination movement in the midfoot and external rotation on the tibia and femur level. Both measurement techniques were very similar in the way that they quantified the degrees of extension of the 1st MTPJ. If we extrapolate this result to the measurement technique used by the inertial sensors, we could affirm that the values recorded in the supination and external rotation movements were reliable.
Collapse
Affiliation(s)
| | | | | | | | - Lourdes María Fernandez-Seguín
- Physiotherapy Department, University of Seville, 41009 Sevilla, Spain
- Institute of Biomedicine of Seville, 41013 Seville, Spain
| | | |
Collapse
|
4
|
Caravaggi P, Rogati G, Leardini A, Bevoni R, Girolami M, Berti L. Clinical and multi-segment kinematic analysis of a modified Grice arthrodesis to correct type II adult-acquired flat-foot. Gait Posture 2023; 100:268-275. [PMID: 36682320 DOI: 10.1016/j.gaitpost.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Adult acquired flat foot (AAFF) is a symptomatic postural alteration of the foot due to modifications in bony structures and/or soft tissues supporting the medial longitudinal arch. For the most severe cases, when orthotic solutions do not provide enough pain relief, surgery may be necessary. RESEARCH QUESTION Is it possible to restore a normal medial longitudinal arch and to correct the static and dynamic frontal plane alignment of the rearfoot via a modified Grice surgical procedure in AAFF patients? METHODS Eleven patients with stage II AAFF were recruited in the study and underwent the Grice procedure. Patients were assessed via gait analysis using a validated multi-segment foot protocol. Double-leg standing static posture and foot joint kinematics during barefoot walking were measured before surgery and at a mean follow-up of 15 ± 8 months. Twenty-seven age-matched healthy subjects without foot morphological alterations were used as control. Patients' feet were clinically assessed via the Foot Function Index and the Foot Posture Index. Wilcoxon signed rank test was used to assess differences in kinematic and spatio-temporal parameters between pre-op and follow-up evaluations. 1D statistical parametric mapping was used to assess differences in temporal profiles of foot joint rotations. RESULTS The clinical indexes significantly improved at post-op (p < 0.05). No differences in sagittal plane static and dynamic joint rotations were observed between pre-op and post-op. In the frontal plane, metatarsus to calcaneus and midfoot to calcaneus rotation angles significantly improved from pre-op to post-op, with the latter resulting consistent with control data. Range of motion and maximum value of the medial longitudinal arch angle were reduced following surgery. SIGNIFICANCE The modified Grice procedure restored a good frontal-plane alignment of rearfoot and midfoot, and the clinical scores provided evidence of its effectiveness in significantly reducing pain and improving the quality of daily activities.
Collapse
Affiliation(s)
- Paolo Caravaggi
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10 40136, Bologna, Italy.
| | - Giulia Rogati
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10 40136, Bologna, Italy.
| | - Alberto Leardini
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10 40136, Bologna, Italy.
| | - Roberto Bevoni
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10 40136, Bologna, Italy.
| | - Mauro Girolami
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10 40136, Bologna, Italy.
| | - Lisa Berti
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10 40136, Bologna, Italy; University of Bologna, Italy.
| |
Collapse
|
5
|
Su W, Zhang S, Ye D, Sun X, Zhang X, Fu W. Effects of Barefoot and Shod on the In Vivo Kinematics of Medial Longitudinal Arch During Running Based on a High-Speed Dual Fluoroscopic Imaging System. Front Bioeng Biotechnol 2022; 10:917675. [PMID: 35837546 PMCID: PMC9274304 DOI: 10.3389/fbioe.2022.917675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Shoes affect the biomechanical properties of the medial longitudinal arch (MLA) and further influence the foot’s overall function. Most previous studies on the MLA were based on traditional skin-marker motion capture, and the observation of real foot motion inside the shoes is difficult. Thus, the effect of shoe parameters on the natural MLA movement during running remains in question. Therefore, this study aimed to investigate the differences in the MLA’s kinematics between shod and barefoot running by using a high-speed dual fluoroscopic imaging system (DFIS). Fifteen healthy habitual rearfoot runners were recruited. All participants ran at a speed of 3 m/s ± 5% along with an elevated runway in barefoot and shod conditions. High-speed DFIS was used to acquire the radiographic images of MLA movements in the whole stance phase, and the kinematics of the MLA were calculated. Paired sample t-tests were used to compare the kinematic characteristics of the MLA during the stance phase between shod and barefoot conditions. Compared with barefoot, shoe-wearing showed significant changes (p < 0.05) as follows: 1) the first metatarsal moved with less lateral direction at 80%, less anterior translation at 20%, and less superiority at 10–70% of the stance phase; 2) the first metatarsal moved with less inversion amounting to 20–60%, less dorsiflexion at 0–10% of the stance phase; 3) the inversion/eversion range of motion (ROM) of the first metatarsal relative to calcaneus was reduced; 4) the MLA angles at 0–70% of the stance phase were reduced; 5) the maximum MLA angle and MLA angle ROM were reduced in the shod condition. Based on high-speed DFIS, the above results indicated that shoe-wearing limited the movement of MLA, especially reducing the MLA angles, suggesting that shoes restricted the compression and recoil of the MLA, which further affected the spring-like function of the MLA.
Collapse
Affiliation(s)
- Wanyan Su
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shen Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Shen Zhang, ; Weijie Fu,
| | - Dongqiang Ye
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaole Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- *Correspondence: Shen Zhang, ; Weijie Fu,
| |
Collapse
|
6
|
Schallig W, van den Noort JC, Piening M, Streekstra GJ, Maas M, van der Krogt MM, Harlaar J. The Amsterdam Foot Model: a clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics. J Foot Ankle Res 2022; 15:46. [PMID: 35668453 PMCID: PMC9172122 DOI: 10.1186/s13047-022-00543-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Foot and ankle joint kinematics are measured during clinical gait analyses with marker-based multi-segment foot models. To improve on existing models, measurement errors due to soft tissue artifacts (STAs) and marker misplacements should be reduced. Therefore, the aim of this study is to define a clinically informed, universally applicable multi-segment foot model, which is developed to minimize these measurement errors. METHODS The Amsterdam foot model (AFM) is a follow-up of existing multi-segment foot models. It was developed by consulting a clinical expert panel and optimizing marker locations and segment definitions to minimize measurement errors. Evaluation of the model was performed in three steps. First, kinematic errors due to STAs were evaluated and compared to two frequently used foot models, i.e. the Oxford and Rizzoli foot models (OFM, RFM). Previously collected computed tomography data was used of 15 asymptomatic feet with markers attached, to determine the joint angles with and without STAs taken into account. Second, the sensitivity to marker misplacements was determined for AFM and compared to OFM and RFM using static standing trials of 19 asymptomatic subjects in which each marker was virtually replaced in multiple directions. Third, a preliminary inter- and intra-tester repeatability analysis was performed by acquiring 3D gait analysis data of 15 healthy subjects, who were equipped by two testers for two sessions. Repeatability of all kinematic parameters was assessed through analysis of the standard deviation (σ) and standard error of measurement (SEM). RESULTS The AFM was defined and all calculation methods were provided. Errors in joint angles due to STAs were in general similar or smaller in AFM (≤2.9°) compared to OFM (≤4.0°) and RFM (≤6.7°). AFM was also more robust to marker misplacement than OFM and RFM, as a large sensitivity of kinematic parameters to marker misplacement (i.e. > 1.0°/mm) was found only two times for AFM as opposed to six times for OFM and five times for RFM. The average intra-tester repeatability of AFM angles was σ:2.2[0.9°], SEM:3.3 ± 0.9° and the inter-tester repeatability was σ:3.1[2.1°], SEM:5.2 ± 2.3°. CONCLUSIONS Measurement errors of AFM are smaller compared to two widely-used multi-segment foot models. This qualifies AFM as a follow-up to existing foot models, which should be evaluated further in a range of clinical application areas.
Collapse
Affiliation(s)
- Wouter Schallig
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Josien C van den Noort
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands
| | - Marjolein Piening
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Geert J Streekstra
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Mario Maas
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, the Netherlands
| | - Marjolein M van der Krogt
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
| | - Jaap Harlaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
- Department of Orthopedics & Sports Medicine , ErasmusMC, Rotterdam, the Netherlands
| |
Collapse
|