1
|
Guo Z, Guo Y, Wang Y, Bi Y, Deng Y, Cao Y, Huang M. Finite element analysis of the treatment of a minimally invasive approach combined with a novel anatomical locking plate for scapular body fractures. J Orthop Surg Res 2024; 19:410. [PMID: 39014468 PMCID: PMC11253453 DOI: 10.1186/s13018-024-04905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The minimally invasive approach for the treatment of displaced scapular neck or body fractures has the advantages of less trauma and minimal muscle dissection. In clinical practice, the minimally invasive approach combined with an anatomical locking plate has been used to treat scapular body fractures. In addition, we have made minor modifications to the minimally invasive approach. However, the biomechanical study about the approach combined with an anatomical locking plate in treating scapular body fractures was limited. METHODS Finite element analysis (FEA) was used to conduct the biomechanical comparison between the anatomical locking plate (AP model) and reconstructive plate (RP model) in the treatment of scapular body fractures through the modified minimally invasive approach. A healthy male volunteer with no history of scapula or systemic diseases was recruited. High-resolution computed tomography images of his right scapula were obtained. Two scapula models were constructed and analyzed by the software of Mimics 21.0, Geomagic Wrap 2021, SolidWorks 2021, and ANSYS Workbench 2022, respectively. RESULTS Through static structural analysis, in terms of equivalent von Mises stress, equivalent elastic strain, and total deformation, the AP model exhibited superior safety characteristics, enhanced flexibility, and anticipated stability compared with the RP model. This was evidenced by lower maximum stress, lower maximum strain and displacement. CONCLUSION The minimally invasive approach combined with an anatomical locking plate for scapular body fractures had better biomechanical stability. The study provided a biomechanical basis to guide the clinical treatment of scapular body fractures.
Collapse
Affiliation(s)
- Zhanpeng Guo
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yue Guo
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yansong Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yunlong Bi
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Deng
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Mina Huang
- School of Nursing, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
Zhu S, Chen Y, Wang P, Shi LL, Li G, Li X, Koh JL, Wang S, Yuan Tsai T, Cui G, Wang S, Shao X, Wang J. In Vivo Analysis of Acromioclavicular Kinematics and Distance During Multiplanar Humeral Elevation. Am J Sports Med 2024; 52:474-484. [PMID: 38197156 DOI: 10.1177/03635465231216116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Knowledge of acromioclavicular (AC) joint kinematics and distance may provide insight into the biomechanical function and development of new treatment methods. However, accurate data on in vivo AC kinematics and distance between the clavicle and acromion remain unknown. PURPOSE/HYPOTHESIS The purpose of this study was to investigate 3-dimensional AC kinematics and distance during arm elevation in abduction, scaption, and forward flexion in a healthy population. It was hypothesized that AC kinematics and distance would vary with the elevation angle and plane of the arm. STUDY DESIGN Controlled laboratory study. METHODS A total of 19 shoulders of healthy participants were enrolled. AC kinematics and distance were investigated with a combined dual fluoroscopic imaging system and computed tomography. Rotation and translation of the AC joint were calculated. The AC distance was measured as the minimum distance between the medial border of the acromion and the articular surface of the distal clavicle (ASDC). The minimum distance point (MDP) ratio was defined as the length between the MDP and the posterior edge of the ASDC divided by the anterior-posterior length of the ASDC. AC kinematics and distance between different elevation planes and angles were compared. RESULTS Progressive internal rotation, upward rotation, and posterior tilt of the AC joint were observed in all elevation planes. The scapula rotated more upward relative to the clavicle in abduction than in scaption (P = .002) and flexion (P = .005). The arm elevation angle significantly affected translation of the AC joint. The acromion translated more laterally and more posteriorly in scaption than in abduction (P < .001). The AC distance decreased from the initial position to 75° in all planes and was significantly greater in flexion (P < .001). The MDP ratio significantly increased with the elevation angle (P < .001). CONCLUSION Progressive rotation and significant translation of the AC joint were observed in different elevation planes. The AC distance decreased with the elevation angle from the initial position to 75°. The minimum distance between the ASDC and the medial border of the acromion moved anteriorly as the shoulder elevation angle increased. CLINICAL RELEVANCE These results could serve as benchmark data for future studies aiming to improve the surgical treatment of AC joint abnormalities to restore optimal function.
Collapse
Affiliation(s)
- Siyuan Zhu
- Department of Orthopaedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhou Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Wang
- Department of Orthopaedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lewis L Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoan Li
- Orthopedic Bioengineering Research Center, Newton-Wellesley Hospital, Newton, Massachusetts, USA
- Department of Orthopedic Surgery, Newton-Wellesley Hospital, Newton, Massachusetts, USA
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinning Li
- Department of Orthopaedic Surgery, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jason L Koh
- Department of Orthopaedic Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaobai Wang
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tsung Yuan Tsai
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqing Cui
- Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaojie Wang
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiexiang Shao
- Department of Orthopaedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Wang
- Department of Orthopaedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Investigation performed at Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Rodrigues da Silva Barros B, Dal’Ava Augusto D, de Medeiros Neto JF, Michener LA, Silva RS, Sousa CDO. Isometric versus isotonic exercise in individuals with rotator cuff tendinopathy-Effects on shoulder pain, functioning, muscle strength, and electromyographic activity: A protocol for randomized clinical trial. PLoS One 2023; 18:e0293457. [PMID: 37956135 PMCID: PMC10642785 DOI: 10.1371/journal.pone.0293457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/08/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Rotator cuff tendinopathy is a common shoulder disorder in which the primary treatment is resistance exercises. Isometric exercises are being studied for lower limb tendinopathies but not for rotator cuff tendinopathy. This protocol for a randomized clinical trial aims to compare the effects of two types of exercise (isometric and isotonic) on shoulder pain, functioning, muscle strength, and electromyographic activity in individuals with rotator cuff tendinopathy. METHODS Forty-six individuals (18 to 60 years old) with shoulder pain for more than three months and unilateral supraspinatus and/or infraspinatus tendinopathy will participate in this trial. Individuals will be randomized into two exercise groups: isometric or isotonic. The following outcomes will be evaluated before and after the first session and after six weeks of intervention: shoulder pain and functioning; isometric strength of shoulder elevation and lateral and medial rotation; and electromyographic activity of medial deltoid, infraspinatus, serratus anterior, and lower trapezius. Groups will perform stretching and strengthening of periscapular muscles. The isometric group will perform three sets of 32 s, at 70% of maximal isometric strength. The isotonic group will perform concentric and eccentric exercises (2 s for each phase) in three sets of eight repetitions at a load of eight repetition maximum. The total time under tension of 96 s will be equal for both groups, and load will be adjusted in weeks three and five of the protocol. Treatment effect between groups will be analyzed using linear mixed model. TRIAL REGISTRATION Trial registration number: Universal Trial Number (UTN) code U1111-1284-7528 and Brazilian Clinical Trials Registry platform-RBR-3pvdvfk.
Collapse
Affiliation(s)
- Bianca Rodrigues da Silva Barros
- Department of Physical Therapy, Postgraduate Program of Physical Therapy, Federal University of Rio Grande do Norte, Natal, State of Rio Grande do Norte, Brazil
| | - Denise Dal’Ava Augusto
- Department of Physical Therapy, Postgraduate Program of Physical Therapy, Federal University of Rio Grande do Norte, Natal, State of Rio Grande do Norte, Brazil
| | | | - Lori Ann Michener
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Rodrigo Scattone Silva
- Faculty of Health Sciences of Trairi, Postgraduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Santa Cruz, State of Rio Grande do Norte, Brazil
| | - Catarina de Oliveira Sousa
- Department of Physical Therapy, Postgraduate Program of Physical Therapy, Federal University of Rio Grande do Norte, Natal, State of Rio Grande do Norte, Brazil
| |
Collapse
|
4
|
Sulkar HJ, Aliaj K, Tashjian RZ, Chalmers PN, Foreman KB, Henninger HB. High and low performers in internal rotation after reverse total shoulder arthroplasty: a biplane fluoroscopic study. J Shoulder Elbow Surg 2023; 32:e133-e144. [PMID: 36343789 PMCID: PMC10023281 DOI: 10.1016/j.jse.2022.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Internal rotation in adduction is often limited after reverse total shoulder arthroplasty (rTSA), but the origins of this functional deficit are unclear. Few studies have directly compared individuals who can and cannot perform internal rotation in adduction. Little data on underlying 3D humerothoracic, scapulothoracic, and glenohumeral joint relationships in these patients are available. METHODS Individuals >1-year postoperative to rTSA were imaged with biplane fluoroscopy in resting neutral and internal rotation in adduction poses. Subjects could either perform internal rotation in adduction with their hand at T12 or higher (high, N = 7), or below the hip pocket (low, N = 8). Demographics, the American Shoulder and Elbow Surgeons score, Simple Shoulder Test, and scapular notching grade were recorded. Joint orientation angles were derived from model-based markerless tracking of the scapula and humerus relative to the torso. The 3D implant models were aligned to preoperative computed tomography models to evaluate bone-implant impingement. RESULTS The Simple Shoulder Test was highest in the high group (11 ± 1 vs. 9 ± 2, P = .019). Two subjects per group had scapular notching (grades 1 and 2), and 3 high group and 4 low group subjects had impingement below the glenoid. In the neutral pose, the scapula had 7° more upward rotation in the high group (P = .100), and the low group demonstrated 9° more posterior tilt (P = .017) and 14° more glenohumeral elevation (P = .047). In the internal rotation pose, axial rotation was >45° higher in the high group (P ≤ .008) and the low group again had 11° more glenohumeral elevation (P = .058). Large rotational differences within subject groups arose from a combination of differences in the resting neutral and maximum internal rotation in adduction poses, not only the terminal arm position. CONCLUSIONS Individuals who were able to perform high internal rotation in adduction after rTSA demonstrated differences in joint orientation and anatomic biases versus patients with low internal rotation. The high rotation group had 7° more resting scapular upward rotation and used a 15°-30° change in scapular tilt to perform internal rotation in adduction versus patients in the low group. The combination of altered resting scapular posture and restricted scapulothoracic range of motion could prohibit glenohumeral rotation required to reach internal rotation in adduction. In addition, inter-patient variation in humeral torsion may contribute substantially to postoperative internal rotation differences. These data point toward modifiable implant design and placement factors, as well as foci for physical therapy to strengthen and mobilize the scapula and glenohumeral joint in response to rTSA surgery.
Collapse
Affiliation(s)
- Hema J Sulkar
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Klevis Aliaj
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert Z Tashjian
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Peter N Chalmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - K Bo Foreman
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Heath B Henninger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Choi M, Chung J. Biomechanical and functional analysis of the shoulder complex and thoracic spine in patients with subacromial impingement syndrome: A case control study. Medicine (Baltimore) 2023; 102:e32760. [PMID: 36705396 PMCID: PMC9875974 DOI: 10.1097/md.0000000000032760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The motions of the shoulder are mainly carried out through the glenohumeral joint, but are also assisted by the scapulothoracic joint. Therefore, changes in the biomechanics of the thoracic spine and scapula affect the function of the shoulder. However, there is limited information on the biomechanical and functional characteristics of the shoulder complex and thoracic spine in patients with subacromial impingement syndrome (SIS). In this study, the biomechanical and functional characteristics of the shoulder complex and thoracic spine were analyzed in patients with SIS compared to healthy individuals. A total of 108 participants were included in this study. Participants were classified into 2 groups, the SIS (n = 55) and healthy (n = 53) groups. The shoulder and thoracic range of motion (ROM), scapular position, and isokinetic shoulder strength were measured in all participants. The shoulder ROM was significantly decreased in the SIS group compared to the healthy group (P < .001). The thoracic spine ROM showed significantly limited extension in the SIS group (P < .001). The scapular position showed significantly increased anterior tilting (P = .005), internal rotation (P = .032), protraction (P < .001), and decreased upward rotation (P = .002) in the SIS group. The isokinetic shoulder external rotation (P < .001) and abduction (P < .001) strength were significantly lower in the SIS group. Patients with SIS showed reduced shoulder ROM and end-range extension of the thoracic spine compared to healthy individuals, and the scapula was in a more anterior-tilted, protracted, and downward rotated position. In addition, it showed lower external rotation and abduction strength. These results suggest the need for interventions to improve the limited thoracic extension and altered scapular position, which may affect shoulder ROM and muscle strength in the rehabilitation of patients with SIS.
Collapse
Affiliation(s)
- Moonyoung Choi
- Department of Sports Science Convergence, Dongguk University, Seoul, Republic of Korea
| | - Jinwook Chung
- Department of Sports Science Convergence, Dongguk University, Seoul, Republic of Korea
- * Correspondence: Jinwook Chung, Department of Sports Science Convergence, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea (e-mail: )
| |
Collapse
|
6
|
Application of statistical parametric mapping for comparison of scapular kinematics and EMG. J Biomech 2022; 145:111357. [PMID: 36395530 DOI: 10.1016/j.jbiomech.2022.111357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
Scapular kinematics and EMG are frequently measured as a functional assessment of the shoulder. Previous studies have compared interval averaging for these time series data, but it is not clear whether this method exactly captures the dynamics of scapular kinematics and muscle activity. Statistical parametric mapping (SPM) can be used to compare time series data. The purpose of this study was to investigate whether there is a difference between the results of SPM and interval averaging (every 10° or 30°) in comparing scapular kinematics, EMG, and EMG ratio. Scapular kinematics and EMG of the upper trapezius (UT), middle trapezius (MT), and lower trapezius (LT) and serratus anterior (SA) were measured in 21 healthy males. Tasks included arm raising and lowering with or without load, and we compared scapular kinematics, EMG, and EMG ratio in the loaded and unloaded conditions. Results suggest disagreement between SPM and interval averaging. Characteristic results are that for scapular kinematics during lowering SPM showed a decrease in upward rotation in only the regions 113-65° and 42-30°, while interval averaging showed a decrease in all range. For EMG during lowering, SPM results were not significantly different in SA over 50-48 and 45-30°, while interval averaging suggested increased activity in all ranges. For EMG ratio during raising, SPM showed no significant difference, while interval averaging showed a decrease in UT/LT during the latter period. These results indicate that SPM provides better resolution regarding effect regions than interval averaging, and suggest that SPM may improve shoulder function assessment accuracy.
Collapse
|
7
|
Sulkar HJ, Aliaj K, Tashjian RZ, Chalmers PN, Foreman KB, Henninger HB. Reverse Total Shoulder Arthroplasty Alters Humerothoracic, Scapulothoracic, and Glenohumeral Motion During Weighted Scaption. Clin Orthop Relat Res 2022; 480:2254-2265. [PMID: 35857295 PMCID: PMC9555951 DOI: 10.1097/corr.0000000000002321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Reverse total shoulder arthroplasty (rTSA) typically restores active arm elevation. Prior studies in patients with rTSA during tasks that load the arm had limitations that obscured underlying three-dimensional (3D) kinematic changes and the origins of motion restrictions. Understanding the scapulothoracic and glenohumeral contributions to loaded arm elevation will uncover where functional deficits arise and inform strategies to improve rTSA outcomes. QUESTIONS/PURPOSES In a cohort of patients who had undergone rTSA and a control cohort, we asked: (1) Is there a difference in maximum humerothoracic elevation when scapular plane elevation (scaption) is performed with and without a handheld weight? (2) Is maximum humerothoracic elevation related to factors like demographics, patient-reported outcome scores, isometric strength, and scapular notching (in the rTSA group only)? (3) Are there differences in underlying 3D scapulothoracic and glenohumeral motion during scaption with and without a handheld weight? METHODS Ten participants who underwent rTSA (six males, four females; age 73 ± 8 years) were recruited at follow-up visits if they were more than 1 year postoperative (24 ± 11 months), had a BMI less than 35 kg/m 2 (29 ± 4 kg/m 2 ), had a preoperative CT scan, and could perform pain-free scaption. Data from 10 participants with a nonpathologic shoulder, collected previously (five males, five females; age 58 ± 7 years; BMI 26 ± 3 kg/m 2 ), were a control group with the same high-resolution quantitative metrics available for comparison. Participants in both groups performed scaption with and without a 2.2-kg handheld weight while being imaged with biplane fluoroscopy. Maximum humerothoracic elevation and 3D scapulothoracic and glenohumeral kinematics across their achievable ROM were collected via dynamic imaging. In the same session the American Shoulder and Elbow Surgeons (ASES) score, the Simple Shoulder Test (SST), and isometric strength were collected. Data were compared between weighted and unweighted scaption using paired t-tests and linear mixed-effects models. RESULTS When compared with unweighted scaption, maximum humerothoracic elevation decreased during weighted scaption for patients who underwent rTSA (-25° ± 30°; p = 0.03) but not for the control group (-2° ± 5°; p = 0.35). In the rTSA group, maximum elevation correlated with the ASES score (r = 0.72; p = 0.02), and weighted scaption correlated with BMI (r = 0.72; p = 0.02) and the SST (r = 0.76; p = 0.01). Scapular notching was observed in three patients after rTSA (Grades 1 and 2). Four of 10 patients who underwent rTSA performed weighted scaption to less than 90° humerothoracic elevation using almost exclusively scapulothoracic motion, with little glenohumeral contribution. This manifested as changes in the estimated coefficient representing mean differences in slopes in the humerothoracic plane of elevation (-12° ± 2°; p < 0.001) and true axial rotation (-16° ± 2°; p < 0.001), scapulothoracic upward rotation (7° ± 1°; p < 0.001), and glenohumeral elevation (-12° ± 1°; p < 0.001), plane of elevation (-8° ± 3°; p = 0.002), and true axial rotation (-11° ± 2°; p < 0.001). The control group demonstrated small differences between scaption activities (< |2°|), but a 10° increase in humerothoracic and glenohumeral axial rotation (both p < 0.001). CONCLUSION After rTSA surgery, maximum humerothoracic elevation decreased during weighted scaption by up to 88° compared with unweighted scaption, whereas 4 of 10 patients could not achieve more than 90° of elevation. These patients exhibited appreciable changes in nearly all scapulothoracic and glenohumeral degrees of freedom, most notably a near absence of glenohumeral elevation during weighted scaption. Patients with rTSA have unique strategies to elevate their arms, often with decreased glenohumeral motion and resultant compensation in scapulothoracic motion. In contrast, the control group showed few differences when lifting a handheld weight. CLINICAL RELEVANCE Functional deficiency in activities that load the shoulder after rTSA surgery can affect patient independence, and they may be prevalent but not captured in clinical studies. Pre- or postoperative rehabilitation to strengthen scapular stabilizers and the deltoid should be evaluated against postoperative shoulder function. Further study is required to determine the etiology of deficient glenohumeral motion after rTSA, and the most effective surgical and/or rehabilitative strategies to restore deficient glenohumeral motion after rTSA.
Collapse
Affiliation(s)
- Hema J. Sulkar
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Klevis Aliaj
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Peter N. Chalmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - K. Bo Foreman
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Heath B. Henninger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|