1
|
Gaba S, Sahu M, Chauhan N, Jain U. Transforming growth factor alpha: Key insights into physiological role, cancer therapeutics, and biomarker potential (A review). Int J Biol Macromol 2025; 310:143212. [PMID: 40250676 DOI: 10.1016/j.ijbiomac.2025.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Transforming Growth Factor Alpha (TGF-α) is a critical member of the epidermal growth factor (EGF) family and a key regulator of various physiological processes, including cellular proliferation, survival, differentiation, wound repair, and tissue regeneration. Deficiencies or mutations in TGF-α have been associated with impaired tissue development and organ growth, underscoring its critical role in maintaining normal and healthy physiology. Alterations in its levels are frequently implicated in the neoplastic transformation of cells, contributing to cancer development. Several strategies for targeting TGF-α in cancer therapy have been explored, such as the use of antibodies, recombinant proteins, oligonucleotide-mediated interference in ligand synthesis, ligand sequestration via binding proteins, and modulation of the signal transduction pathway. Furthermore, there is growing interest in the potential of TGF-α as a diagnostic or prognostic biomarker for cancer. This review delves into the role of TGF-α in normal physiology and its involvement in carcinogenesis. It highlights therapies targeting TGF-α and explores future directions in targeting TGF-α/EGFR signaling using advancing approaches, including nanoparticle-based drug delivery systems, CRISPR-Cas genome editing tool, PROTAC, and combination therapies. By bringing attention to this molecule, we aim to explore its untapped potential in cancer treatment and inspire further research into its promising applications across related fields. While recent studies highlight the promise of TGF-α as a clinical biomarker, further research is needed to validate its specificity and integration into personalized medicine. By providing a comprehensive overview of TGF-α in both normal and pathological contexts, this review aims to offer new insights into its translational applications in cancer therapeutics and biomarker discovery.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Mridul Sahu
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, India.
| |
Collapse
|
2
|
Tripathy RK, Pande AH. Molecular and functional insight into anti-EGFR nanobody: Theranostic implications for malignancies. Life Sci 2024; 345:122593. [PMID: 38554946 DOI: 10.1016/j.lfs.2024.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Targeted therapy and imaging are the most popular techniques for the intervention and diagnosis of cancer. A potential therapeutic target for the treatment of cancer is the epidermal growth factor receptor (EGFR), primarily for glioblastoma, lung, and breast cancer. Over-production of ligand, transcriptional up-regulation due to autocrine/paracrine signalling, or point mutations at the genomic locus may contribute to the malfunction of EGFR in malignancies. This exploit makes use of EGFR, an established biomarker for cancer diagnostics and treatment. Despite considerable development in the last several decades in making EGFR inhibitors, they are still not free from limitations like toxicity and a short serum half-life. Nanobodies and antibodies share similar binding properties, but nanobodies have the additional advantage that they can bind to antigenic epitopes deep inside the target that conventional antibodies are unable to access. For targeted therapy, anti-EGFR nanobodies can be conjugated to various molecules such as drugs, peptides, toxins and photosensitizers. These nanobodies can be designed as novel immunoconjugates using the universal modular antibody-based platform technology (UniCAR). Furthermore, Anti-EGFR nanobodies can be expressed in neural stem cells and visualised by effective fluorescent and radioisotope labelling.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali) 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali) 160062, Punjab, India.
| |
Collapse
|
3
|
Mu JD, Ma LX, Zhang Z, Qian X, Zhang QY, Ma LH, Sun TY. The factors affecting neurogenesis after stroke and the role of acupuncture. Front Neurol 2023; 14:1082625. [PMID: 36741282 PMCID: PMC9895425 DOI: 10.3389/fneur.2023.1082625] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Stroke induces a state of neuroplasticity in the central nervous system, which can lead to neurogenesis phenomena such as axonal growth and synapse formation, thus affecting stroke outcomes. The brain has a limited ability to repair ischemic damage and requires a favorable microenvironment. Acupuncture is considered a feasible and effective neural regulation strategy to improve functional recovery following stroke via the benign modulation of neuroplasticity. Therefore, we summarized the current research progress on the key factors and signaling pathways affecting neurogenesis, and we also briefly reviewed the research progress of acupuncture to improve functional recovery after stroke by promoting neurogenesis. This study aims to provide new therapeutic perspectives and strategies for the recovery of motor function after stroke based on neurogenesis.
Collapse
Affiliation(s)
- Jie-Dan Mu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Xiao Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China,The Key Unit of State Administration of Traditional Chines Medicine, Evaluation of Characteristic Acupuncture Therapy, Beijing, China,*Correspondence: Liang-Xiao Ma ✉
| | - Zhou Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Qian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qin-Yong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Hui Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tian-Yi Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Stravodimou A, Voutsadakis IA. Neurotrophic receptor tyrosine kinase family members in secretory and non-secretory breast carcinomas. World J Clin Oncol 2022; 13:135-146. [PMID: 35316931 PMCID: PMC8894271 DOI: 10.5306/wjco.v13.i2.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/11/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer is the most common female cancer and a major cause of morbidity and mortality. Progress in breast cancer therapeutics has been attained with the introduction of targeted therapies for specific sub-sets. However, other subsets lack targeted interventions and thus there is persisting need for identification and characterization of molecular targets in order to advance breast cancer therapeutics.
AIM To analyze the role of lesions in neurotrophic receptor tyrosine kinase (NTRK) genes in breast cancers.
METHODS Analysis of publicly available genomic breast cancer datasets was performed for identification and characterization of cases with fusions and other molecular abnormalities involving NTRK1, NTRK2 and NTRK3 genes.
RESULTS NTRK fusions are present in a small number of breast cancers at the extensive GENIE project data set which contains more than 10000 breast cancers. These cases are not identified as secretory in the database, suggesting that the histologic characterization is not always evident. In the breast cancer The Cancer Genome Atlas (TCGA) cohort the more common molecular lesion in NTRK genes is amplification of NTRK1 observed in 7.9% of breast cancers.
CONCLUSION Neurotrophin receptors molecular lesions other than fusions are observed more often than fusions. However, currently available NTRK inhibitors are effective mainly for fusion lesions. Amplifications of NTRK1, being more frequent in breast cancers, could be a viable therapeutic target if inhibitors efficacious for them become available.
Collapse
Affiliation(s)
| | - Ioannis A Voutsadakis
- Department of Medical Oncology, Sault Area Hospital, Sault Ste Marie P6B0A8, Ontario, Canada
| |
Collapse
|
5
|
Roosan MR, Mambetsariev I, Pharaon R, Fricke J, Baroz AR, Chao J, Chen C, Nasser MW, Chirravuri-Venkata R, Jain M, Smith L, Yost SE, Reckamp KL, Pillai R, Arvanitis L, Afkhami M, Wang EW, Chung V, Cristea M, Fakih M, Koczywas M, Massarelli E, Mortimer J, Yuan Y, Batra SK, Pal S, Salgia R. Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients. Cancers (Basel) 2021; 13:2776. [PMID: 34204917 PMCID: PMC8199748 DOI: 10.3390/cancers13112776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis continues to be the primary cause of all cancer-related deaths despite the recent advancements in cancer treatments. To evaluate the role of mutations in overall survival (OS) and treatment outcomes, we analyzed 957 metastatic patients with seven major cancer types who had available molecular testing results with a FoundationOne CDx® panel. The most prevalent genes with somatic mutations were TP53, KRAS, APC, and LRP1B. In this analysis, these genes had mutation frequencies higher than in publicly available datasets. We identified that the somatic mutations were seven mutually exclusive gene pairs and an additional fifty-two co-occurring gene pairs. Mutations in the mutually exclusive gene pair APC and CDKN2A showed an opposite effect on the overall survival. However, patients with CDKN2A mutations showed significantly shorter OS (HR: 1.72, 95% CI: 1.34-2.21, p < 0.001) after adjusting for cancer type, age at diagnosis, and sex. Five-year post metastatic diagnosis survival analysis showed a significant improvement in OS (median survival 28 and 43 months in pre-2015 and post-2015 metastatic diagnosis, respectively, p = 0.00021) based on the year of metastatic diagnosis. Although the use of targeted therapies after metastatic diagnosis prolonged OS, the benefit was not statistically significant. However, longer five-year progression-free survival (PFS) was significantly associated with targeted therapy use (median 10.9 months (CI: 9.7-11.9 months) compared to 9.1 months (CI: 8.1-10.1 months) for non-targeted therapy, respectively, p = 0.0029). Our results provide a clinically relevant overview of the complex molecular landscape and survival mechanisms in metastatic solid cancers.
Collapse
Affiliation(s)
- Moom R. Roosan
- School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
| | - Isa Mambetsariev
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Rebecca Pharaon
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Jeremy Fricke
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Angel R. Baroz
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Joseph Chao
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Chen Chen
- Applied AI and Data Science, City of Hope, Duarte, CA 91010, USA;
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Ramakanth Chirravuri-Venkata
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Susan E. Yost
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Karen L. Reckamp
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
- Cedars-Sinai Medical Center, Department of Medicine, Division of Medical Oncology, Los Angeles, CA 90048, USA
| | - Raju Pillai
- Department of Pathology, City of Hope, Duarte, CA 91010, USA; (R.P.); (L.A.); (M.A.)
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope, Duarte, CA 91010, USA; (R.P.); (L.A.); (M.A.)
| | - Michelle Afkhami
- Department of Pathology, City of Hope, Duarte, CA 91010, USA; (R.P.); (L.A.); (M.A.)
| | - Edward W. Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Vincent Chung
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Mihaela Cristea
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Marwan Fakih
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Marianna Koczywas
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Joanne Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.W.N.); (R.C.-V.); (M.J.); (S.K.B.)
| | - Sumanta Pal
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (I.M.); (R.P.); (J.F.); (A.R.B.); (J.C.); (S.E.Y.); (K.L.R.); (E.W.W.); (V.C.); (M.C.); (M.F.); (M.K.); (E.M.); (J.M.); (Y.Y.)
| |
Collapse
|
6
|
Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv Cancer Res 2020; 147:1-57. [PMID: 32593398 DOI: 10.1016/bs.acr.2020.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors and their receptor tyrosine kinases (RTKs), a group of transmembrane molecules harboring cytoplasm-facing tyrosine-specific kinase functions, play essential roles in migration of multipotent cell populations and rapid proliferation of stem cells' descendants, transit amplifying cells, during embryogenesis and tissue repair. These intrinsic functions are aberrantly harnessed when cancer cells undergo intertwined phases of cell migration and proliferation during cancer progression. For example, by means of clonal expansion growth factors fixate the rarely occurring driver mutations, which initiate tumors. Likewise, autocrine and stromal growth factors propel angiogenesis and penetration into the newly sprouted vessels, which enable seeding micro-metastases at distant organs. We review genetic and other mechanisms that preempt ligand-mediated activation of RTKs, thereby supporting sustained cancer progression. The widespread occurrence of aberrant RTKs and downstream signaling pathways in cancer, identifies molecular targets suitable for pharmacological intervention. We list all clinically approved cancer drugs that specifically intercept oncogenic RTKs. These are mainly tyrosine kinase inhibitors and monoclonal antibodies, which can inhibit cancer but inevitably become progressively less effective due to adaptive rewiring processes or emergence of new mutations, processes we overview. Similarly important are patient treatments making use of radiation, chemotherapeutic agents and immune checkpoint inhibitors. The many interfaces linking RTK-targeted therapies and these systemic or local regimens are described in details because of the great promise offered by combining pharmacological modalities.
Collapse
|
7
|
Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS One 2020; 15:e0231542. [PMID: 32497034 PMCID: PMC7272051 DOI: 10.1371/journal.pone.0231542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Collapse
|
8
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
9
|
Subramanian G, Johnson PD, Zachary T, Roush N, Zhu Y, Bowen SJ, Janssen A, Duclos BA, Williams T, Javens C, Shalaly ND, Molina DM, Wittwer AJ, Hirsch JL. Deciphering the Allosteric Binding Mechanism of the Human Tropomyosin Receptor Kinase A ( hTrkA) Inhibitors. ACS Chem Biol 2019; 14:1205-1216. [PMID: 31059222 DOI: 10.1021/acschembio.9b00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Access to cryptic binding pockets or allosteric sites on a kinase that present themselves when the enzyme is in a specific conformational state offers a paradigm shift in designing the next generation small molecule kinase inhibitors. The current work showcases an extensive and exhaustive array of in vitro biochemical and biophysical tools and techniques deployed along with structural biology efforts of inhibitor-bound kinase complexes to characterize and confirm the cryptic allosteric binding pocket and docking mode of the small molecule actives identified for hTrkA. Specifically, assays were designed and implemented to lock the kinase in a predominantly active or inactive conformation and the effect of the kinase inhibitor probed to understand the hTrkA binding and hTrkB selectivity. The current outcome suggests that inhibitors with a fast association rate take advantage of the inactive protein conformation and lock the kinase state by also exhibiting a slow off-rate. This in turn shifts the inactive/active state protein conformational equilibrium cycle, affecting the subsequent downstream signaling.
Collapse
Affiliation(s)
- Govindan Subramanian
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Paul D. Johnson
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Theresa Zachary
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Nicole Roush
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Yaqi Zhu
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Scott J. Bowen
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Ann Janssen
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Brian A. Duclos
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Christopher Javens
- Veterinary Medicine Research & Development (VMRD), Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | | | | | - Arthur J. Wittwer
- Confluence Discovery Technologies, 4320 Forest Park Avenue, St. Louis, Missouri 63108, United States
| | - Jeffrey L. Hirsch
- Confluence Discovery Technologies, 4320 Forest Park Avenue, St. Louis, Missouri 63108, United States
| |
Collapse
|
10
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
11
|
Konicek BW, Capen AR, Credille KM, Ebert PJ, Falcon BL, Heady GL, Patel BKR, Peek VL, Stephens JR, Stewart JA, Stout SL, Timm DE, Um SL, Willard MD, Wulur IH, Zeng Y, Wang Y, Walgren RA, Betty Yan SC. Merestinib (LY2801653) inhibits neurotrophic receptor kinase (NTRK) and suppresses growth of NTRK fusion bearing tumors. Oncotarget 2018; 9:13796-13806. [PMID: 29568395 PMCID: PMC5862616 DOI: 10.18632/oncotarget.24488] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023] Open
Abstract
Merestinib is an oral multi-kinase inhibitor targeting a limited number of oncokinases including MET, AXL, RON and MKNK1/2. Here, we report that merestinib inhibits neurotrophic receptor tyrosine kinases NTRK1/2/3 which are oncogenic drivers in tumors bearing NTRK fusion resulting from chromosomal rearrangements. Merestinib is shown to be a type II NTRK1 kinase inhibitor as determined by x-ray crystallography. In KM-12 cells harboring TPM3-NTRK1 fusion, merestinib exhibits potent p-NTRK1 inhibition in vitro by western blot and elicits an anti-proliferative response in two- and three-dimensional growth. Merestinib treatment demonstrated profound tumor growth inhibition in in vivo cancer models harboring either a TPM3-NTRK1 or an ETV6-NTRK3 gene fusion. To recapitulate resistance observed from type I NTRK kinase inhibitors entrectinib and larotrectinib, we generated NIH-3T3 cells exogenously expressing TPM3-NTRK1 wild-type, or acquired mutations G595R and G667C in vitro and in vivo. Merestinib blocks tumor growth of both wild-type and mutant G667C TPM3-NTRK1 expressing NIH-3T3 cell-derived tumors. These preclinical data support the clinical evaluation of merestinib, a type II NTRK kinase inhibitor (NCT02920996), both in treatment naïve patients and in patients progressed on type I NTRK kinase inhibitors with acquired secondary G667C mutation in NTRK fusion bearing tumors.
Collapse
Affiliation(s)
- Bruce W Konicek
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Andrew R Capen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Kelly M Credille
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip J Ebert
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Beverly L Falcon
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Gary L Heady
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Bharvin K R Patel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Victoria L Peek
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Jennifer R Stephens
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Julie A Stewart
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Stephanie L Stout
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David E Timm
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Suzane L Um
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Melinda D Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Isabella H Wulur
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yi Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yong Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Richard A Walgren
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Sau-Chi Betty Yan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
12
|
Cetin B, Bilgetekin I, Cengiz M, Ozet A. Hepatotoxicity of vascular endothelial growth factor receptor tyrosine kinase inhibitors: clinical practice and evidence. DRUGS & THERAPY PERSPECTIVES 2017; 33:395-402. [DOI: 10.1007/s40267-017-0416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells 2017; 6:cells6020013. [PMID: 28574446 PMCID: PMC5492017 DOI: 10.3390/cells6020013] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain. The receptor is activated by a variety of polypeptide ligands such as epidermal growth factor and transforming growth factor α. It has long been thought that EGFR is activated by ligand-induced dimerization of the receptor monomer, which brings intracellular kinase domains into close proximity for trans-autophosphorylation. An increasing number of diverse studies, however, demonstrate that EGFR is present as a pre-formed, yet inactive, dimer prior to ligand binding. Furthermore, recent progress in structural studies has provided insight into conformational changes during the activation of a pre-formed EGFR dimer. Upon ligand binding to the extracellular domain of EGFR, its transmembrane domains rotate or twist parallel to the plane of the cell membrane, resulting in the reorientation of the intracellular kinase domain dimer from a symmetric inactive configuration to an asymmetric active form (the “rotation model”). This model is also able to explain how oncogenic mutations activate the receptor in the absence of the ligand, without assuming that the mutations induce receptor dimerization. In this review, we discuss the mechanisms underlying the ligand-induced activation of the preformed EGFR dimer, as well as how oncogenic mutations constitutively activate the receptor dimer, based on the rotation model.
Collapse
|
14
|
Haddad Y, Adam V, Heger Z. Trk Receptors and Neurotrophin Cross-Interactions: New Perspectives Toward Manipulating Therapeutic Side-Effects. Front Mol Neurosci 2017; 10:130. [PMID: 28515680 PMCID: PMC5414483 DOI: 10.3389/fnmol.2017.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
Some therapeutic side-effects result from simultaneous activation of homolog receptors by the same ligand. Tropomyosin receptor kinases (TrkA, TrkB and TrkC) play a major role in the development and biology of neurons through neurotrophin signaling. The wide range of cross-interactions between Trk receptors and neurotrophins vary in selectivity, affinity and function. In this study, we discuss new perspectives to the manipulation of side-effects via a better understanding of the cross-interactions at the molecular level, derived by computational methods. Available crystal structures of Trk receptors and neurotrophins are a valuable resource for exploitation via molecular mechanics (MM) and dynamics (MD). The study of the energetics and dynamics of neurotrophins or neurotrophic peptides interacting with Trk receptors will provide insight to structural regions that may be candidates for drug targeting and signaling pathway selection.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| |
Collapse
|
15
|
Liu S, Kurzrock R. Understanding Toxicities of Targeted Agents: Implications for Anti-tumor Activity and Management. Semin Oncol 2015; 42:863-75. [DOI: 10.1053/j.seminoncol.2015.09.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL, McCubrey JA. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 2015; 59:65-81. [PMID: 26257206 DOI: 10.1016/j.jbior.2015.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about therapeutic resistance and CSCs. This review will focus on recent advances in the field and how they affect pancreatic cancer research and treatment.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
17
|
Ségaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015; 4:1-12. [PMID: 26579483 PMCID: PMC4620971 DOI: 10.1016/j.jbo.2015.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/13/2023] Open
Abstract
Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is tightly controlled by the release of polypeptide mediators activating signalling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases.
Collapse
Affiliation(s)
- Aude I Ségaliny
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marta Tellez-Gabriel
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marie-Françoise Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| |
Collapse
|
18
|
Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H. NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul 2014; 58:16-27. [PMID: 25491371 DOI: 10.1016/j.jbior.2014.11.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) and its precursor (proNGF) are primarily considered as regulators of neuronal function that induce their responses via the tyrosine kinase receptor TrkA and the pan-neurotrophin receptor p75NTR. It has been generally held that NGF exerts its effects primarily through TrkA, inducing a cascade of tyrosine kinase-initiated responses, while proNGF binds more strongly to p75NTR. When this latter entity interacts with a third receptor, sortilin, apoptotic responses are induced in contrast to the survival/differentiation associated with the other two. Recent studies have outlined portions of the downstream phosphoproteome of TrkA in the neuronal PC12 cells and have clarified the contribution of individual docking sites in the TrkA endodomain. The patterns observed showed a similarity with the profile induced by the epidermal growth factor receptor, which is extensively associated with oncogenesis. Indeed, as with other neurotrophic factors, the distribution of TrkA and p75NTR is not limited to neuronal tissue, thus providing an array of targets outside the nervous systems. One such source is breast cancer cells, in which NGF and proNGF stimulate breast cancer cell survival/growth and enhance cell invasion, respectively. This latter activity is exerted via TrkA (as opposed to p75NTR) in conjunction with sortilin. Another tissue overexpressing proNGF is prostate cancer and here the ability of cancer cells to induce neuritogenesis has been implicated in cancer progression. These studies show that the non-neuronal functions of proNGF/NGF are likely integrated with their neuronal activities and point to the clinical utility of these growth factors and their receptors as biomarkers and therapeutic targets for metastasis and cancer pain.
Collapse
Affiliation(s)
| | - Jay Pundavela
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| | - Jordane Biarc
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | | | - A L Burlingame
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| |
Collapse
|
19
|
Yun C, Gang L, Rongmin G, Xu W, Xuezhi M, Huanqiu C. Essential role of Her3 in two signaling transduction patterns: Her2/Her3 and MET/Her3 in proliferation of human gastric cancer. Mol Carcinog 2014; 54:1700-9. [PMID: 25400108 DOI: 10.1002/mc.22241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/29/2022]
Abstract
Various receptor tyrosine kinase (RTK) pathways were verified in many cancers including gastric cancer (GC), We sought to investigate the expression of RTKs including Her2, Her3, and Met and their transduction patterns in human GC. Over-expression of Her2, Her3, and c-Met in human GC was verified by immunohistochemistry leading to constitutive activation of RTK signaling pathways. Combined RTKs expression was valuable indicators for poor prognosis of GC patients. Using ErbB2 specific inhibitor Lapatinib and c-Met specific inhibitor PHA-665752, we further demonstrated that this constitutive activation of RTK signaling is necessary for the survival of GC cells. However, various RTK pattern: Her3/Her2 and Met/Her3 were verified in the transduction growth stimulus from outside via both AKT and MAPK signaling. Moreover, the essential roles of Her3 in both two heterodimers were obtained which showed significantly attenuated growth effect due to Her3 knockdown both in vitro and in vivo. In conclusion, various molecular transduction patterns: Her2/Her3 and Met/Her3 were verified in human GC, and Her3 could serve as a potential target in GC treatment.
Collapse
Affiliation(s)
- Chen Yun
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Li Gang
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Gu Rongmin
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Ming Xuezhi
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Chen Huanqiu
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Liu S, Kurzrock R. Toxicity of targeted therapy: Implications for response and impact of genetic polymorphisms. Cancer Treat Rev 2014; 40:883-91. [PMID: 24867380 DOI: 10.1016/j.ctrv.2014.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022]
Abstract
Targeted therapies have unique toxicity profiles. Common adverse events include rash, diarrhea, hypertension, hypothyroidism, proteinuria, depigmentation, and hepatotoxicity. Some of these toxicities are caused by on-target, mechanism-associated effects, which can be stratified as to whether or not the targets are relevant to response. Other toxicities are off-target and may be caused by the class of agent, e.g. antibody vs small molecule tyrosine kinase inhibitor, or by immune reactions or toxic metabolites. Both on- and off-target toxicities may be due to higher drug concentrations or altered end-organ sensitivity, which in turn can be a consequence of genetic polymorphisms controlling metabolism or tissue responsiveness. On-target toxicities are important to identify as some correlate with response and, hence, amelioration of these side effects is preferable to dose reduction or stopping drug. Toxicities secondary to relevant target impact may be recognized when distinct types of agents, such as antibodies and small molecule kinase inhibitors, with the same target have a similar side effect. For example, both bevacizumab and vascular endothelial growth factor receptor (VEGFR) kinase inhibitors cause hypertension; both epidermal growth factor receptor (EGFR) antibodies and kinase inhibitors cause rash; and these toxicities correlate with response. Herein we review common targeted agent-related toxicities, relevant genetic polymorphisms, and implications for response and patient management.
Collapse
Affiliation(s)
- Sariah Liu
- Division of Hematology and Oncology and Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, United States.
| | - Razelle Kurzrock
- Division of Hematology and Oncology and Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, United States
| |
Collapse
|
21
|
Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells 2014; 3:304-30. [PMID: 24758840 PMCID: PMC4092861 DOI: 10.3390/cells3020304] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan.
| |
Collapse
|
22
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli AM, Steelman LS. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul 2013; 54:176-96. [PMID: 24169510 DOI: 10.1016/j.jbior.2013.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Jorg Basecke
- Department of Medicine, University of Göttingen, Göttingen, Germany; Sanct-Josef-Hospital Cloppenburg, Department of Hematology and Oncology, Cloppenburg, Germany
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
23
|
Rayego-Mateos S, Rodrigues-Díez R, Morgado-Pascual JL, Rodrigues Díez RR, Mas S, Lavoz C, Alique M, Pato J, Keri G, Ortiz A, Egido J, Ruiz-Ortega M. Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J Mol Cell Biol 2013; 5:323-35. [PMID: 23929714 DOI: 10.1093/jmcb/mjt030] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic kidney disease is reaching epidemic proportions worldwide and there is no effective treatment. Connective tissue growth factor (CCN2) has been suggested as a risk biomarker and a potential therapeutic target for renal diseases, but its specific receptor has not been identified. Epidermal growth factor receptor (EGFR) participates in kidney damage, but whether CCN2 activates the EGFR pathway is unknown. Here, we show that CCN2 is a novel EGFR ligand. CCN2 binding to EGFR extracellular domain was demonstrated by surface plasmon resonance. CCN2 contains four distinct structural modules. The carboxyl-terminal module (CCN2(IV)) showed a clear interaction with soluble EGFR, suggesting that EGFR-binding site is located in this module. Injection of CCN2(IV) in mice increased EGFR phosphorylation in the kidney, mainly in tubular epithelial cells. EGFR kinase inhibition decreased CCN2(IV)-induced renal changes (ERK activation and inflammation). Studies in cultured tubular epithelial cells showed that CCN2(IV) binds to EGFR leading to ERK activation and proinflammatory factors overexpression. CCN2 interacts with the neurotrophin receptor TrkA, and EGFR/TrkA receptor crosstalk was found in response to CCN2(IV) stimulation. Moreover, endogenous CCN2 blockade inhibited TGF-β-induced EGFR activation. These findings indicate that CCN2 is a novel EGFR ligand that contributes to renal damage through EGFR signalling.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Negrini S, D'Alessandro R, Meldolesi J. NGF signaling in PC12 cells: the cooperation of p75(NTR) with TrkA is needed for the activation of both mTORC2 and the PI3K signalling cascade. Biol Open 2013; 2:855-66. [PMID: 23951412 PMCID: PMC3744078 DOI: 10.1242/bio.20135116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022] Open
Abstract
PC12-27, a PC12 clone characterized by high levels of the transcription repressor REST and by very low mTORC2 activity, had been shown to be unresponsive to NGF, possibly because of its lack of the specific TrkA receptor. The neurotrophin receptor repressed by high REST in PC12-27 cells, however, is shown now to be not TrkA, which is normal, but p75(NTR), whose expression is inhibited at the transcriptional level. When treated with NGF, the PC12-27 cells lacking p75(NTR) exhibited a defective TrkA autophosphorylation restricted, however, to the TrkA(Y490) site, and an impairment of the PI3K signaling cascade. This defect was sustained in part by a mTORC1-dependent feed-back inhibition that in wtPC12 cells appeared marginal. Transfection of p75(NTR) to a level and surface distribution analogous to wtPC12 did not modify various high REST-dependent properties of PC12-27 cells such as high β-catenin, low TSC2 and high proliferation rate. In contrast, the defective PI3K signaling cascade and its associated mTORC2 activity were largely rescued together with the NGF-induced neurite outgrowth response. These changes were not due to p75(NTR) alone but required its cooperation with TrkA. Our results demonstrate that, in PC12, high REST induces alterations of NGF signaling which, however, are indirect, dependent on the repression of p75(NTR); and that the well-known potentiation by p75(NTR) of the TrkA signaling does not concern all the effects induced by NGF but primarily the PI3K cascade and its associated mTORC2, a complex known to play an important role in neural cell differentiation.
Collapse
Affiliation(s)
- Sara Negrini
- San Raffaele Scientific Institute , DIBIT, via Olgettina 58, 20132, Milan , Italy ; Vita-Salute San Raffaele University , Division of Neuroscience, via Olgettina 58, 20132 Milan , Italy
| | | | | |
Collapse
|