1
|
Morgan JAM, Singh A, Kurz L, Nadler-Holly M, Ruwolt M, Ganguli S, Sharma S, Penkert M, Krause E, Liu F, Bhandari R, Fiedler D. Extensive protein pyrophosphorylation revealed in human cell lines. Nat Chem Biol 2024; 20:1305-1316. [PMID: 38664588 PMCID: PMC11427299 DOI: 10.1038/s41589-024-01613-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/27/2024] [Indexed: 09/28/2024]
Abstract
Reversible protein phosphorylation is a central signaling mechanism in eukaryotes. Although mass-spectrometry-based phosphoproteomics has become routine, identification of non-canonical phosphorylation has remained a challenge. Here we report a tailored workflow to detect and reliably assign protein pyrophosphorylation in two human cell lines, providing, to our knowledge, the first direct evidence of endogenous protein pyrophosphorylation. We manually validated 148 pyrophosphosites across 71 human proteins, the most heavily pyrophosphorylated of which were the nucleolar proteins NOLC1 and TCOF1. Detection was consistent with previous biochemical evidence relating the installation of the modification to inositol pyrophosphates (PP-InsPs). When the biosynthesis of PP-InsPs was perturbed, proteins expressed in this background exhibited no signs of pyrophosphorylation. Disruption of PP-InsP biosynthesis also significantly reduced rDNA transcription, potentially by lowering pyrophosphorylation on regulatory proteins NOLC1, TCOF1 and UBF1. Overall, protein pyrophosphorylation emerges as an archetype of non-canonical phosphorylation and should be considered in future phosphoproteomic analyses.
Collapse
Affiliation(s)
- Jeremy A M Morgan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Leonie Kurz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Max Ruwolt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Sheenam Sharma
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Zong G, Desfougères Y, Portela-Torres P, Kwon YU, Saiardi A, Shears SB, Wang H. Biochemical and structural characterization of an inositol pyrophosphate kinase from a giant virus. EMBO J 2024; 43:462-480. [PMID: 38216735 PMCID: PMC10897400 DOI: 10.1038/s44318-023-00005-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024] Open
Abstract
Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.
Collapse
Affiliation(s)
- Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yann Desfougères
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paloma Portela-Torres
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Yong-Uk Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
4
|
Aguirre T, Dornan GL, Hostachy S, Neuenschwander M, Seyffarth C, Haucke V, Schütz A, von Kries JP, Fiedler D. An unconventional gatekeeper mutation sensitizes inositol hexakisphosphate kinases to an allosteric inhibitor. eLife 2023; 12:RP88982. [PMID: 37843983 PMCID: PMC10578927 DOI: 10.7554/elife.88982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.
Collapse
Affiliation(s)
- Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Anja Schütz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
5
|
TNP Analogues Inhibit the Virulence Promoting IP3-4 Kinase Arg1 in the Fungal Pathogen Cryptococcus neoformans. Biomolecules 2022; 12:biom12101526. [PMID: 36291735 PMCID: PMC9599641 DOI: 10.3390/biom12101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP3 to IP8, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP3-4 kinase (IP3-4K) the most critical. The dibenzylaminopurine compound, N2-(m-trifluorobenzylamino)-N6-(p-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP3-4K has not been investigated. We purified IP3-4K from the human pathogens, Cryptococcus neoformans and Candida albicans, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC50) and binding affinity (KD), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP3-4K from C. neoformans (CnArg1) at low µM IC50s, but not IP3-4K from C. albicans (CaIpk2) and many analogues exhibited selectivity for CnArg1 over the human equivalent, HsIPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP3-4K.
Collapse
|
6
|
Zhou Y, Mukherjee S, Huang D, Chakraborty M, Gu C, Zong G, Stashko MA, Pearce KH, Shears SB, Chakraborty A, Wang H, Wang X. Development of Novel IP6K Inhibitors for the Treatment of Obesity and Obesity-Induced Metabolic Dysfunctions. J Med Chem 2022; 65:6869-6887. [PMID: 35467861 PMCID: PMC9383042 DOI: 10.1021/acs.jmedchem.2c00220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Obesity and obesity-induced metabolic dysfunctions are significant risk factors for nonalcoholic fatty liver disease and cardiovascular diseases. Thus, obesity is an economic and social burden in developed countries. Blocking the synthesis of inositol pyrophosphates by inositol hexakisphosphate kinase (IP6K) has been identified as a potential therapeutic strategy for obesity and related diseases. We have developed a novel and potent IP6K inhibitor 20 (UNC7467) (IC50 values: IP6K1 8.9 nM; IP6K2 4.9 nM; IP6K3 1320 nM). Inositol phosphate profiling of the HCT116 colon cancer cell line demonstrates that 20 reduced levels of inositol pyrophosphates by 66-81%, without significantly perturbing levels of other inositol phosphates. Furthermore, intraperitoneal injection of 20 in diet-induced obese mice improved glycemic profiles, ameliorated hepatic steatosis, and reduced weight gain without altering food intake. Thus, inhibitor 20 can be used as an in vivo probe for IP6K-related research. Moreover, it may have therapeutic relevance in treating obesity and related diseases.
Collapse
Affiliation(s)
- Yubai Zhou
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Daowei Huang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Michael A Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|