1
|
Collins BM, Cullen PJ. Separation of powers: A key feature underlying the neuroprotective role of Retromer in age-related neurodegenerative disease? Curr Opin Cell Biol 2025; 94:102516. [PMID: 40253888 DOI: 10.1016/j.ceb.2025.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
The retromer complex was discovered in Saccharomyces cerevisiae as a multiprotein, pentameric assembly essential for recycling of integral membrane cargo proteins through the endosomal network [1,2]. We now understand how retromer is assembled, its membrane architecture, and how it selects proteins for recycling [3-6]. Conserved across eukaryotes, analyses have revealed retromer's role in organism development, and homeostasis and has linked retromer defects with age-related Alzheimer's disease and Parkinson's disease and other neurological disorders [3,5,7]. Indeed, stabilizing retromer function is now actively considered a therapeutic strategy [8]. Here, we reflect on its structural and functional evolution rather than overviewing retromer biology (see, e.g. [5,7]). Specifically, we clarify the organization of the human retromer to provide greater focus for future research, especially within the context of retromer's function in neuroprotection.
Collapse
Affiliation(s)
- Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland, 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
2
|
Chandra M, Kendall AK, Ford MGJ, Jackson LP. VARP binds SNX27 to promote endosomal supercomplex formation on membranes. SCIENCE ADVANCES 2025; 11:eadr9340. [PMID: 39937906 PMCID: PMC11817943 DOI: 10.1126/sciadv.adr9340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
Endosomes are vital cellular hubs for sorting protein cargoes. Retromer (VPS26/VPS35/VPS29) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but assembly mechanisms of metazoan SNX/Retromer complexes remain elusive. We combine biochemical and biophysical approaches with AlphaFold modeling to identify a previously unidentified direct interaction between SNX27 and VARP. A full biochemical reconstitution system using purified proteins systematically tests how and when coats are recruited to membranes to generate tubules. We demonstrate and measure how specific combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes, remodel membranes containing physiological cargo and phospholipids. SNX27, alone and with Retromer, remodels membranes with PI(3)P and PDZbm cargo. ESCPE-1 deforms membranes with bis-phosphoinositides and CI-MPR cargo but surprisingly does not recruit Retromer. VARP co-immunoprecipitates all coat components in cells and is required to reconstitute a proposed endosomal "supercomplex" (SNX27, ESCPE-1, and Retromer) in vitro. These data suggest VARP regulates metazoan endosomal coat assembly to promote cargo sorting out of endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marijn G. J. Ford
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
4
|
Chandra M, Kendall AK, Ford MGJ, Jackson LP. VARP binds SNX27 to promote endosomal supercomplex formation on membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603126. [PMID: 39026782 PMCID: PMC11257539 DOI: 10.1101/2024.07.11.603126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple essential membrane trafficking pathways converge at endosomes to maintain cellular homeostasis by sorting critical transmembrane cargo proteins to the plasma membrane or the trans-Golgi network (TGN). The Retromer heterotrimer (VPS26/VPS35/VPS29 subunits) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but molecular mechanisms regarding formation and regulation of metazoan SNX/Retromer complexes have been elusive. Here, we combine biochemical and biophysical approaches with AlphaFold2 Multimer modeling to identify a direct interaction between the VARP N-terminus and SNX27 PDZ domain. VARP and SNX27 interact with high nanomolar affinity using the binding pocket established for PDZ binding motif (PDZbm) cargo. Specific point mutations in VARP abrogate the interaction in vitro. We further establish a full biochemical reconstitution system using purified mammalian proteins to directly and systematically test whether multiple endosomal coat complexes are recruited to membranes to generate tubules. We successfully use purified coat components to demonstrate which combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes can remodel membranes containing physiological cargo motifs and phospholipid composition. SNX27, alone and with Retromer, induces tubule formation in the presence of PI(3)P and PDZ cargo motifs. ESCPE-1 deforms membranes enriched with Folch I and CI-MPR cargo motifs, but surprisingly does not recruit Retromer. Finally, we find VARP is required to reconstitute a proposed endosomal "supercomplex" containing SNX27, ESCPE-1, and Retromer on PI(3)P-enriched membranes. These data suggest VARP functions as a key regulator in metazoans to promote cargo sorting out of endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, Hierro A. Architecture of the ESCPE-1 membrane coat. Nat Struct Mol Biol 2023; 30:958-969. [PMID: 37322239 PMCID: PMC10352136 DOI: 10.1038/s41594-023-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.
Collapse
Affiliation(s)
| | | | | | - Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - David Gil-Carton
- CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
| | - Miguel Romero-Durana
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel Castaño-Díez
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Aitor Hierro
- CIC bioGUNE, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
7
|
Simonetti B, Daly JL, Cullen PJ. Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. Traffic 2023; 24:234-250. [PMID: 37089068 PMCID: PMC10768393 DOI: 10.1111/tra.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.
Collapse
Affiliation(s)
- Boris Simonetti
- Charles River Laboratories, Discovery House, Quays Office ParkConference Avenue, PortisheadBristolUK
| | - James L. Daly
- Department of Infectious DiseasesSchool of Immunology and Microbial Sciences, Guy's Hospital, King's College LondonLondonUK
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
8
|
Xie B, Guillem C, Date SS, Cohen CI, Jung C, Kendall AK, Best JT, Graham TR, Jackson LP. An interaction between β'-COP and the ArfGAP, Glo3, maintains post-Golgi cargo recycling. J Cell Biol 2023; 222:e202008061. [PMID: 36811888 PMCID: PMC9960064 DOI: 10.1083/jcb.202008061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/14/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
The essential COPI coat mediates retrieval of transmembrane proteins at the Golgi and endosomes following recruitment by the small GTPase, Arf1. ArfGAP proteins regulate COPI coats, but molecular details for COPI recognition by ArfGAPs remain elusive. Biochemical and biophysical data reveal how β'-COP propeller domains directly engage the yeast ArfGAP, Glo3, with a low micromolar binding affinity. Calorimetry data demonstrate that both β'-COP propeller domains are required to bind Glo3. An acidic patch on β'-COP (D437/D450) interacts with Glo3 lysine residues located within the BoCCS (binding of coatomer, cargo, and SNAREs) region. Targeted point mutations in either Glo3 BoCCS or β'-COP abrogate the interaction in vitro, and loss of the β'-COP/Glo3 interaction drives Ste2 missorting to the vacuole and aberrant Golgi morphology in budding yeast. These data suggest that cells require the β'-COP/Glo3 interaction for cargo recycling via endosomes and the TGN, where β'-COP serves as a molecular platform to coordinate binding to multiple proteins, including Glo3, Arf1, and the COPI F-subcomplex.
Collapse
Affiliation(s)
- Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Clara Guillem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Swapneeta S. Date
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Christian Jung
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
9
|
Abstract
Complex mechanisms govern the sorting of membrane (cargo) proteins at endosomes to ensure that protein localization to the post-Golgi endomembrane system is accurately maintained. Endosomal retrieval complexes mediate sorting by recognizing specific motifs and signals in the cytoplasmic domains of cargo proteins transiting through endosomes. In this review, the recent progress in understanding the molecular mechanisms of how the retromer complex, in conjunction with sorting nexin (SNX) proteins, operates in cargo recognition and sorting is discussed. New data revealing the importance of different SNX proteins and detailing how post-translational modifications can modulate cargo sorting to respond to changes in the environment are highlighted along with the key role that endosomal protein sorting plays in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Simonetti B, Guo Q, Giménez-Andrés M, Chen KE, Moody ERR, Evans AJ, Chandra M, Danson CM, Williams TA, Collins BM, Cullen PJ. SNX27-Retromer directly binds ESCPE-1 to transfer cargo proteins during endosomal recycling. PLoS Biol 2022; 20:e3001601. [PMID: 35417450 PMCID: PMC9038204 DOI: 10.1371/journal.pbio.3001601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/25/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Coat complexes coordinate cargo recognition through cargo adaptors with biogenesis of transport carriers during integral membrane protein trafficking. Here, we combine biochemical, structural, and cellular analyses to establish the mechanistic basis through which SNX27-Retromer, a major endosomal cargo adaptor, couples to the membrane remodeling endosomal SNX-BAR sorting complex for promoting exit 1 (ESCPE-1). In showing that the SNX27 FERM (4.1/ezrin/radixin/moesin) domain directly binds acidic-Asp-Leu-Phe (aDLF) motifs in the SNX1/SNX2 subunits of ESCPE-1, we propose a handover model where SNX27-Retromer captured cargo proteins are transferred into ESCPE-1 transport carriers to promote endosome-to-plasma membrane recycling. By revealing that assembly of the SNX27:Retromer:ESCPE-1 coat evolved in a stepwise manner during early metazoan evolution, likely reflecting the increasing complexity of endosome-to-plasma membrane recycling from the ancestral opisthokont to modern animals, we provide further evidence of the functional diversification of yeast pentameric Retromer in the recycling of hundreds of integral membrane proteins in metazoans.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Manuel Giménez-Andrés
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Edmund R. R. Moody
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ashley J. Evans
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Chris M. Danson
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|