1
|
Tan X, Xiao Z, Zhang S, Wang Y, Zhao Y, Lu Q, Hu F, Zuo S, Mao J, Liu J, Shan Y. Engineering Saccharomyces cerevisiae for De Novo Biosynthesis of 3'-Hydroxygenistein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4797-4806. [PMID: 39948827 DOI: 10.1021/acs.jafc.4c11201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The polyhydroxy isoflavone 3'-hydroxygenistein (3'-OHG) has a wide range of pharmaceutical and nutraceutical benefits. Therefore, it is important to develop an efficient and sustainable method for 3'-OHG production. Here, we engineered the metabolic pathways of Saccharomyces cerevisiae to achieve de novo biosynthesis of 3'-OHG. First, we screened 2-hydroxyisoflavanone synthase (IFS), cytochrome P450 reductase, and 2-hydroxyisoflavanone dehydratase from different sources and optimized the best combination via promoter engineering. Next, we demonstrated that amplification of the rate-limiting enzyme PlIFS from Pueraria lobata improved genistein production. Increasing the availability of the cofactor heme further increased genistein titer to 44.55 ± 1.82 mg/L. Subsequently, screening and multicopy integration of isoflavone-3'-hydroxylase achieved 13.23 ± 0.27 mg/L 3'-OHG from 100 mg/L naringenin. Finally, 1.40 ± 0.02 mg/L 3'-OHG could be achieved via the de novo biosynthesis pathway. The final strain generated in this study will facilitate the production of polyhydroxy isoflavones via the 3'-OHG biosynthetic pathway.
Collapse
Affiliation(s)
- Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Siqi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yongtong Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yifei Zhao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Qiyuan Lu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Fanglin Hu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Shasha Zuo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Juan Liu
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Dongting Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| |
Collapse
|
2
|
Study of the Antimicrobial Potential of Actinomycetes Isolated from Organic and Inorganic Waste. Curr Microbiol 2022; 79:372. [PMID: 36269434 DOI: 10.1007/s00284-022-03024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/04/2022] [Indexed: 11/03/2022]
Abstract
The main objective of this investigation was to characterize a collection of actinomycetes strains isolated from unexplored polluted ecosystems and to evaluate their antimicrobial potential in order to discover interesting bioactive compounds. Based on morphological and culture characters, 32 different strains were isolated: 20 strains from compost heap, seven strains from manure, and five strains from waste water. As expected, the genus Streptomyces was the most prevalent followed by the genus Micromonospora. Analysis of the antimicrobial activities of the isolated strains showed that those from compost heap were more efficient against the tested microorganisms (Candida albicans, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli). Several bioactive compounds were identified by liquid chromatography (LC) combined with mass spectrometry (MS) and then analyzed by both MEDINA's database, which contains the most common secondary metabolites, and Dictionary of Natural Products Chapman & Hall. Many interesting well-known and unknown biomolecules were identified. Quinomycin A and Daidzein were the most fascinating compounds isolated, respectively, by Streptomyces sp. WW2 and Streptomyces sp. WW4. The most active strain was identified based on 16S rDNA's sequences and it seems to be a new strain. The crude extract of the strain CH12 was analyzed and the UV absorption spectra and mass spectra (MS) of the main active compound were reported. It's an interesting compound (possible purpuromycin) with the molecular formula C26H18O13.
Collapse
|
3
|
Gulsunoglu-Konuskan Z, Kilic-Akyilmaz M. Microbial Bioconversion of Phenolic Compounds in Agro-industrial Wastes: A Review of Mechanisms and Effective Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6901-6910. [PMID: 35164503 DOI: 10.1021/acs.jafc.1c06888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agro-industrial wastes have gained great attention as a possible source of bioactive compounds, which may be utilized in various industries including pharmaceutics, cosmetics, and food. The food processing industry creates a vast amount of waste which contains valuable compounds such as phenolics. Polyphenols can be found in soluble (extractable or free), conjugated, and insoluble-bound forms in various plant-based foods including fruits, vegetables, grains, nuts, and legumes. A substantial portion of phenolic compounds in agro-industrial wastes is present in the insoluble-bound form attached to the cell wall structural components and conjugated form which is covalently bound to sugar moieties. These bound phenolic compounds can be released from wastes by hydrolysis of the cell wall and glycosides by microbial enzymes. In addition, they can be converted into unique metabolites by methylation, carboxylation, sulfate conjugation, hydroxylation, and oxidation ability of microorganisms during fermentation. Enhancement of concentration and antioxidant activity of phenolic compounds and production of new metabolites from food wastes by microbial fermentation might be a promising way for better utilization of natural resources. This review provides an overview of mechanisms and factors affecting release and bioconversion of phenolic compounds in agro-industrial wastes by microbial fermentation.
Collapse
Affiliation(s)
- Zehra Gulsunoglu-Konuskan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Meral Kilic-Akyilmaz
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
4
|
Salama S, Habib MH, Hatti-Kaul R, Gaber Y. Reviewing a plethora of oxidative-type reactions catalyzed by whole cells of Streptomyces species. RSC Adv 2022; 12:6974-7001. [PMID: 35424663 PMCID: PMC8982256 DOI: 10.1039/d1ra08816e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Selective oxidation reactions represent a challenging task for conventional organic chemistry. Whole-cell biocatalysis provides a very convenient, easy to apply method to carry out different selective oxidation reactions including chemo-, regio-, and enantio-selective reactions. Streptomyces species are important biocatalysts as they can catalyze these selective reactions very efficiently owing to the wide diversity of enzymes and enzymatic cascades in their cell niche. In this review, we present and analyze most of the examples reported to date of oxidative reactions catalyzed by Streptomyces species as whole-cell biocatalysts. We discuss 33 different Streptomyces species and strains and the role they play in different oxidative reactions over the past five decades. The oxidative reactions have been classified into seven categories that include: hydroxylation of steroids/non-steroids, asymmetric sulfoxidations, oxidation of aldehydes, multi-step oxidations, oxidative cleavage, and N-oxidations. The role played by Streptomyces species as recombinant hosts catalyzing bio-oxidations has also been highlighted.
Collapse
Affiliation(s)
- Sara Salama
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62517 Egypt
| | - Mohamed H Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University Sweden
| | - Yasser Gaber
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University Al-Karak 61710 Jordan
| |
Collapse
|
5
|
Biotransformation of Daidzein, Genistein, and Naringenin by Streptomyces Species Isolated from High-Altitude Soil of Nepal. Int J Microbiol 2021; 2021:9948738. [PMID: 34249126 PMCID: PMC8238566 DOI: 10.1155/2021/9948738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Flavonoids have achieved widespread importance in pharmaceutical, food, and cosmetics industries. Furthermore, modification of these naturally occurring flavonoids to structurally diverse compounds through whole cell biotransformation with enhanced biological activities has numerous biotechnological applications. The present study investigated the biotransformation potential of Streptomyces species isolated from a high-altitude-soil sample towards selected flavonoid molecules. The biotransformed metabolites were confirmed by comparing the HPLC chromatogram with authentic compounds and LC-MS/MS analysis. Of these isolates, Streptomyces species G-18 (Accession number: MW663767.1) catalyzed isoflavone molecules daidzein and genistein to produce hydroxylated products at 24 h of reaction condition in a whole cell system. The hydroxylation of daidzein (4′,7-dihydroxyisoflavone) was confirmed at 3′-position of the B ring to produce 3′,4′,7-trihydroxyisoflavone. In addition, Streptomyces species G-14 (Accession number: MW663770.1) and Streptomyces species S4L (Accession number: MW663769.1) also revealed the transformation of daidzein (4′,7-dihydroxyisoflavone) to hydroxy daidzein at a distinct position than that of G-18 isolates, whereas thee Streptomyces species S4L reaction mixture with naringenin as a substrate also revealed the hydroxylated product. Our results demonstrated that microorganisms isolated from different ecological niches have broad application.
Collapse
|
6
|
Identification of functional cytochrome P450 and ferredoxin from Streptomyces sp. EAS-AB2608 by transcriptional analysis and their heterologous expression. Appl Microbiol Biotechnol 2021; 105:4177-4187. [PMID: 33944982 DOI: 10.1007/s00253-021-11304-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/21/2021] [Accepted: 04/18/2021] [Indexed: 01/02/2023]
Abstract
Bioconversion using microorganisms and their enzymes is an important tool in many industrial fields. The discovery of useful new microbial enzymes contributes to the development of industries utilizing bioprocesses. Streptomyces sp. EAS-AB2608, isolated from a soil sample collected in Japan, can convert the tetrahydrobenzotriazole CPD-1 (a selective positive allosteric modulator of metabotropic glutamate receptor 5) to its hydroxylated form at the C4-(R) position. The current study was performed to identify the genes encoding the enzymes involved in CPD-1 bioconversion and to verify their function. To identify gene products responsible for the conversion of CPD-1, we used RNA sequencing to analyze EAS-AB2608; from its 8333 coding sequences, we selected two genes, one encoding cytochrome P450 (easab2608_00800) and the other encoding ferredoxin (easab2608_00799), as encoding desirable gene products involved in the bioconversion of CPD-1. The validity of this selection was tested by using a heterologous expression approach. A bioconversion assay using genetically engineered Streptomyces avermitilis SUKA24 ∆saverm3882 ∆saverm7246 co-expressing the two selected genes (strain ES_SUKA_63) confirmed that these gene products had hydroxylation activity with respect to CPD-1, indicating that they are responsible for the conversion of CPD-1. Strain ES_SUKA_63 also showed oxidative activity toward other compounds and therefore might be useful not only for bioconversion of CPD-1 but also as a tool for synthesis of drug metabolites and in optimization studies of various pharmaceutical lead compounds. We expect that this approach will be useful for bridging the gap between the latest enzyme optimization technologies and conventional enzyme screening using microorganisms. KEY POINTS: • Genes easab2608_00800 (cyp) and easab2608_00799 (fdx) were selected by RNA-Seq. • Selection validity was evaluated by an engineered S. avermitilis expression system. • Strain ES_SUKA_63 showed oxidative activity toward CPD-1 and other compounds.
Collapse
|
7
|
Barbuto Ferraiuolo S, Cammarota M, Schiraldi C, Restaino OF. Streptomycetes as platform for biotechnological production processes of drugs. Appl Microbiol Biotechnol 2021; 105:551-568. [PMID: 33394149 PMCID: PMC7780072 DOI: 10.1007/s00253-020-11064-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Streptomyces is one of the most versatile genera for biotechnological applications, widely employed as platform in the production of drugs. Although streptomycetes have a complex life cycle and metabolism that would need multidisciplinary approaches, review papers have generally reported only studies on single aspects like the isolation of new strains and metabolites, morphology investigations, and genetic or metabolic studies. Besides, even if streptomycetes are extensively used in industry, very few review papers have focused their attention on the technical aspects of biotechnological processes of drug production and bioconversion and on the key parameters that have to be set up. This mini-review extensively illustrates the most innovative developments and progresses in biotechnological production and bioconversion processes of antibiotics, immunosuppressant, anticancer, steroidal drugs, and anthelmintic agents by streptomycetes, focusing on the process development aspects, describing the different approaches and technologies used in order to improve the production yields. The influence of nutrients and oxygen on streptomycetes metabolism, new fed-batch fermentation strategies, innovative precursor supplementation approaches, and specific bioreactor design as well as biotechnological strategies coupled with metabolic engineering and genetic tools for strain improvement is described. The use of whole, free, and immobilized cells on unusual supports was also reported for bioconversion processes of drugs. The most outstanding thirty investigations published in the last 8 years are here reported while future trends and perspectives of biotechnological research in the field have been illustrated. KEY POINTS: • Updated Streptomyces biotechnological processes for drug production are reported. • Innovative approaches for Streptomyces-based biotransformation of drugs are reviewed. • News about fermentation and genome systems to enhance secondary metabolite production.
Collapse
Affiliation(s)
- Simona Barbuto Ferraiuolo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
8
|
Biotransformation of Hydroxychalcones as a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria. Catalysts 2020. [DOI: 10.3390/catal10101167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was the evaluation of the biotransformation capacity of hydroxychalcones—2-hydroxy-4′-methylchalcone (1) and 4-hydroxy-4′-methylchalcone (4) using two strains of aerobic bacteria. The microbial reduction of the α,β-unsaturated bond of 2-hydroxy-4′-methylchalcone (1) in Gordonia sp. DSM 44456 and Rhodococcus sp. DSM 364 cultures resulted in isolation the 2-hydroxy-4′-methyldihydrochalcone (2) as a main product with yields of up to 35%. Additionally, both bacterial strains transformed compound 1 to the second, unexpected product of reduction and simultaneous hydroxylation at C-4 position—2,4-dihydroxy-4′-methyldihydrochalcone (3) (isolated yields 12.7–16.4%). During biotransformation of 4-hydroxy-4′-methylchalcone (4) we observed the formation of three products: reduction of C=C bond—4-hydroxy-4′-methyldihydrochalcone (5), reduction of C=C bond and carbonyl group—3-(4-hydroxyphenyl)-1-(4-methylphenyl)propan-1-ol (6) and also unpredictable 3-(4-hydroxyphenyl)-1,5-di-(4-methylphenyl)pentane-1,5-dione (7). As far as our knowledge is concerned, compounds 3, 6 and 7 have never been described in the scientific literature.
Collapse
|
9
|
Regioselective Biotransformation of Phloretin Using Streptomyces avermitilis MA4680. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0441-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Bioconversion of Genistein to Orobol by Bacillus subtilis Spore Displayed Tyrosinase and Monitoring the Anticancer Effects of Orobol on MCF-7 Breast Cancer Cells. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0067-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Anteneh YS, Franco CMM. Whole Cell Actinobacteria as Biocatalysts. Front Microbiol 2019; 10:77. [PMID: 30833932 PMCID: PMC6387938 DOI: 10.3389/fmicb.2019.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Production of fuels, therapeutic drugs, chemicals, and biomaterials using sustainable biological processes have received renewed attention due to increasing environmental concerns. Despite having high industrial output, most of the current chemical processes are associated with environmentally undesirable by-products which escalate the cost of downstream processing. Compared to chemical processes, whole cell biocatalysts offer several advantages including high selectivity, catalytic efficiency, milder operational conditions and low impact on the environment, making this approach the current choice for synthesis and manufacturing of different industrial products. In this review, we present the application of whole cell actinobacteria for the synthesis of biologically active compounds, biofuel production and conversion of harmful compounds to less toxic by-products. Actinobacteria alone are responsible for the production of nearly half of the documented biologically active metabolites and many enzymes; with the involvement of various species of whole cell actinobacteria such as Rhodococcus, Streptomyces, Nocardia and Corynebacterium for the production of useful industrial commodities.
Collapse
Affiliation(s)
- Yitayal Shiferaw Anteneh
- College of Medicine and Public Health, Medical Biotechnology, Flinders University, Bedford Park, SA, Australia
- Department of Medical Microbiology, College of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
12
|
Lee PG, Lee UJ, Song H, Choi KY, Kim BG. Recent advances in the microbial hydroxylation and reduction of soy isoflavones. FEMS Microbiol Lett 2018; 365:5089968. [PMID: 30184116 DOI: 10.1093/femsle/fny195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2023] Open
Abstract
Soy isoflavones are naturally occurring phytochemicals, which are biotransformed into functional derivatives through oxidative and reductive metabolic pathways of diverse microorganisms. Such representative derivatives, ortho-dihydroxyisoflavones (ODIs) and equols, have attracted great attention for their versatile health benefits since they were found from soybean fermented foods and human intestinal fluids. Recently, scientists in food technology, nutrition and microbiology began to understand their correct biosynthetic pathways and nutraceutical values, and have attempted to produce the valuable bioactive compounds using microbial fermentation and whole-cell/enzyme-based biotransformation. Furthermore, artificial design of microbial catalysts and/or protein engineering of oxidoreductases were also conducted to enhance production efficiency and regioselectivity of products. This minireview summarizes and introduces the past year's studies and recent advances in notable production of ODIs and equols, and provides information on available microbial species and their catalytic performance with perspectives on industrial application.
Collapse
Affiliation(s)
- Pyung-Gang Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanbit Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- Bioengineering Institute, Seoul National University, Seoul 08826, South Korea
- Institute of Bioengineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Kim KM, Park JS, Choi H, Kim MS, Seo JH, Pandey RP, Kim JW, Hyun CG, Kim SY. Biosynthesis of novel daidzein derivatives using Bacillus amyloliquefaciens whole cells. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1461212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Kyu-Min Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jin-Soo Park
- Natural Constituents Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - HaeRi Choi
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Min-Seon Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Joo-Hyun Seo
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Jin Woo Kim
- Department of Food Science, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Chang-Gu Hyun
- Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju, Republic of Korea
| | - Seung-Young Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
14
|
Hsu C, Wu BY, Chang YC, Chang CF, Chiou TY, Su NW. Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:127-137. [PMID: 29231720 DOI: 10.1021/acs.jafc.7b04647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The soy isoflavones daidzein (DAI) and genistein (GEN) have beneficial effects on human health. However, their oral bioavailability is hampered by their low aqueous solubility. Our previous study revealed two water-soluble phosphorylated conjugates of isoflavones, daidzein 7-O-phosphate and genistein 7-O-phosphate, generated via biotransformation by Bacillus subtilis BCRC80517 cultivated with isoflavones. In this study, two novel derivatives of isoflavones, daidzein 4'-O-phosphate and genistein 4'-O-phosphate, were identified by HPLC-ESI-MS/MS and 1H, 13C, and 31P NMR, and their biotransformation roadmaps were proposed. Primarily, isoflavone glucosides were deglycosylated and then phosphorylated predominantly into 7-O-phosphate conjugates with traces of 4'-O-phosphate conjugates. Inevitably, trace quantities of glucosides were converted into 6″-O-succinyl glucosides. GEN was more efficiently phosphorylated than DAI. Nevertheless, the presence of GEN prolonged the time until the exponential phase of cell growth, whereas the other isoflavones showed little effect on cell growth. Our findings provide new insights into the novel microbial phosphorylation of isoflavones involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Chen Hsu
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Bo-Yuan Wu
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Yu-Chuan Chang
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica , Taipei 11529, Taiwan
| | - Tai-Ying Chiou
- Laboratory of Food Science and Technology, Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology , Kitami 090-8507, Japan
| | - Nan-Wei Su
- Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
15
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
16
|
Effect of Extracellular Tyrosinase on the Expression Level of P450, Fpr, and Fdx and Ortho-hydroxylation of Daidzein in Streptomyces avermitilis. Appl Biochem Biotechnol 2017; 184:1036-1046. [PMID: 28940109 DOI: 10.1007/s12010-017-2606-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
We have reported that the expression of CYP105D7 in Streptomyces avermitilis produces 112.5 mg L-1 of 7,3',4'-trihydroxyisoflavone (3'ODI) in 15 h of the reaction time, when 7,4'-dihydroxyisoflavone (daidzein) is used as a substrate. Although production is significant, rapid degradation of 3'ODI after 15 h was observed in a whole-cell biotransformation system, suggesting the further modification of 3'ODI by endogenous enzymes. In this present study, the effect of deletion of extracellular tyrosinase (melC2) in S. avermitilis for 3'ODI production as well as the expressions of CYP105D7, ferredoxin (Fdx), and ferredoxin reductase (Fpr) were investigated. The result revealed that daidzein hydroxylation activity in the ∆melC2 mutant decreased by 40% compared with wild-type S. avermitilis. Further, melC2 deletion significantly affects the messenger RNA (mRNA) expression profile of CYP105D7 and its electron transfer counterparts. Real-time PCR analysis of 9 Fdx, 6 Fpr, and CYP105D7 revealed a significant decrease in mRNA expression level compared to wild-type S. avermitilis. The result clearly shows that the decrease in daidzein hydroxylation activity is due to the lower expression level of CYP105D7 and its electron transfer counterpart in the ∆melC2 mutant. Furthermore, melC2 deletion prevents the degradation of 3'ODI.
Collapse
|
17
|
Stompor M. 6-Acetamidoflavone obtained by microbiological and chemical methods and its antioxidant activity. J Biotechnol 2016; 237:25-34. [DOI: 10.1016/j.jbiotec.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
|
18
|
Pandey RP, Parajuli P, Koffas MA, Sohng JK. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 2016; 34:634-662. [DOI: 10.1016/j.biotechadv.2016.02.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
|
19
|
Chiang CM, Ding HY, Lu JY, Chang TS. Biotransformation of isoflavones daidzein and genistein by recombinant Pichia pastoris expressing membrane-anchoring and reductase fusion chimeric CYP105D7. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Cao H, Chen X, Jassbi AR, Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 2015; 33:214-223. [PMID: 25447420 DOI: 10.1016/j.biotechadv.2014.10.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/21/2014] [Accepted: 10/29/2014] [Indexed: 02/08/2023]
Abstract
The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at the C-7 and C-4' positions. The O-methylation of flavonols happens at the C-3' and C-4' and microorganisms O-methylate flavones at the C-6 position and the O-methylation of flavanones, usually took place on the hydroxyl groups of the A ring. The prenyl flavanones were cyclized at the prenyl side chain to form a new five-member ring attached to the A ring. Chalcones were regioselectively cyclized to flavanones. Hydrogenation of flavonoids was only reported on transformation of chalcones to dihydrochalcones. The dehydrogenation of flavanoids to flavonoids was not comprehensively studied.
Collapse
Affiliation(s)
- Hui Cao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, PR China; Department of Chemistry, Central South University, Changsha 410083, PR China
| | - Xiaoqing Chen
- Department of Chemistry, Central South University, Changsha 410083, PR China.
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, PR China; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
21
|
Wu SC, Chang CW, Lin CW, Hsu YC. Production of 8-hydroxydaidzein Polyphenol Using Biotransformation by Aspergillus oryzae. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Jung E, Choi KY, Jung DH, Yun H, Kim BG. Ortho-hydroxylation of mammalian lignan enterodiol by cytochrome P450s from Actinomycetes sp. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0211-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Roh C, Kang C. Production of anti-cancer agent using microbial biotransformation. Molecules 2014; 19:16684-92. [PMID: 25325153 PMCID: PMC6270657 DOI: 10.3390/molecules191016684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 11/16/2022] Open
Abstract
Microbial biotransformation is a great model system to produce drugs and biologically active compounds. In this study, we elucidated the fermentation and production of an anti-cancer agent from a microbial process for regiospecific hydroxylation of resveratrol. Among the strains examined, a potent strain showed high regiospecific hydroxylation activity to produce piceatannol. In a 5 L (w/v 3 L) jar fermentation, this wild type Streptomyces sp. in the batch system produced 205 mg of piceatannol (i.e., 60% yields) from 342 mg of resveratrol in 20 h. Using the product, an in vitro anti-cancer study was performed against a human cancer cell line (HeLa). It showed that the biotransformed piceatannol possessed a significant anticancer activity. This result demonstrates that a biotransformation screening method might be of therapeutic interest with respect to the identification of anti-cancer drugs.
Collapse
Affiliation(s)
- Changhyun Roh
- Division of Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea.
| | - ChanKyu Kang
- Ministry of Environment, Daegu Regional Environmental Office, Government Complex, Hwaam-ro, Dalseo-Gu, Daegu 704-841, Korea.
| |
Collapse
|
24
|
Roh C. Biotransformation for multiple regio-selective hydroxylation of isoflavonoid. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Seo MH, Kim BN, Kim KR, Lee KW, Lee CH, Oh DK. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247. Biosci Biotechnol Biochem 2013; 77:1245-50. [PMID: 23748754 DOI: 10.1271/bbb.120899] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aspergillus oryzae KACC 40247 was selected from among 60 fungal strains as an effective 7,8,4'-trihydroxyisoflavone (8-hydroxydaidzein)-producing fungus. The optimal culture conditions for production by this strain in a 7-L fermentor were found to be 30 °C, pH 6, and 300 rpm. Under these conditions, A. oryzae KACC 40247 produced 62 mg/L of 8-hydroxydaidzein from soybean extract in 30 h, with a productivity of 2.1 mg/L/h. These are the highest production and productivity for 8-hydroxydaidzein ever reported. To increase production, several concentrations of daidzin and of daidzein as precursor were added at several culture times. The optimal addition time and concentration for daidzin were 12 h and 1,248 mg/L, and those for daidzein were 12 h and 254 mg/L respectively. Maximum production and productivity for 8-hydroxydaidzein with the addition of daidzein were 95 mg/L and 3.2 mg/L/h respectively, and those with the addition of daidzin were 160 mg/L and 4.4 mg/L/h respectively.
Collapse
Affiliation(s)
- Min-Ho Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Choi KY, Jung E, Yang YH, Kim BG. Production of a novel O-methyl-isoflavone by regioselective sequential hydroxylation and O-methylation reactions in Streptomyces avermitilis host system. Biotechnol Bioeng 2013; 110:2591-9. [PMID: 23592181 DOI: 10.1002/bit.24931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Abstract
Distinct isoflavone O-methyltransferases (IOMTs) from Streptomyces species were isolated and expressed using S. avermitilis host system. Previously reported isoflavone 7-O-methyltransferases (I7OMTs, E.C. 2.1.1.150) and two putative O-methyltransferases (OMTs) from Saccharopolyspora erythraea were selected by comparative sequence grouping and expressed in S. avermitilisΔSaOMT2 under the control of constitutive ermE promoter. During whole-cell biotransformation of 4',7-dihydroxyisoflavone (daidzein) by constructed recombinant strains, production of O-methylated daidzein was investigated. S. avermitilisΔSaOMT2::SeOMT3 (SeOMT3) produced 7-methoxy-4'-hydroxyisoflavone (7-OMD) with 4.5% of low conversion yield due to competitive oxidation reactions. However, SeOMT3 could produce a novel 4',7-dihydroxy-3'-methoxyisoflavone (3'-OMD) (<1%) resulted from subsequent 3'-O-methylation of 3',4',7-trihydroxyisoflavone (3'-OHD) which was a hydroxylated product catalyzed by oxygenases. Although external addition of SAM did not change the conversion yield of O-methylation reaction, co-expression of SAM synthetase gene (metK) with SeOMT3 greatly induced the regiospecific O-methylation reaction at 3'-hydroxyl group with final conversion of 12.1% using 0.1 mM of daidzein.
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
27
|
Kim HJ, Choi KY, Jung DH, Jung JY, Jung E, Yang YH, Kim BG, Oh MK. Transcriptomic study for screening genes involved in the oxidative bioconversions of Streptomyces avermitilis. Bioprocess Biosyst Eng 2013; 36:1621-30. [PMID: 23474968 DOI: 10.1007/s00449-013-0935-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
Abstract
Streptomyces avermitilis is a well known organism producing avermectin antibiotics, and has been utilized as an industrial host for oxidation bioconversion processes. Recently, gene screening strategies related to bioconversions have received much focus, as attempts are made to optimize oxidation and biodegradation pathways to maximize yield and productivity. Here, we have demonstrated the oxidative metabolisms of three molecules, daidzein, p-coumaric acid and mevastatin, where S. avermitilis converted each substrate to 3',4',7-trihydroxyisoflavone, caffeic acid and hydroxyl-mevastatin to yield 9.3, 32.5 and 15.0 %, respectively. Microarray technology was exploited to investigate genome-wide analysis of gene expression changes, which were induced upon the addition of each substrate. Cytochrome P450 hydroxylases (pteC, cyp28 and olmB), diooxygenases (xylE, cdo1 and putatives) and LuxAB-like oxygenase were identified. One of them, cyp28, was indeed a gene encoding P450 hydroxylase responsible for the oxidative reaction of daidzein. Furthermore, possible electron transfer chain (fdrC → pteE → pteC) supporting cytochrome P450 dependent hydroxylation of daidzein has been suggested based on the interpretation of expression profiles. The result provided a potential application of transcriptomic study on uncovering enzymes involved in oxidative bioconversions of S. avermitilis.
Collapse
Affiliation(s)
- Hyo-Jeong Kim
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 136-713, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bae M, Woo M, Kusuma IW, Arung ET, Yang CH, Kim YU. Inhibitory effects of isoflavonoids on rat prostate testosterone 5α-reductase. J Acupunct Meridian Stud 2012; 5:319-22. [PMID: 23265084 DOI: 10.1016/j.jams.2012.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022] Open
Abstract
Testosterone 5α-reductase inhibitors represent important therapeutic drugs for use against androgen-dependent diseases such as benign prostatic hyperplasia, male pattern baldness, and acne. We have searched for inhibitors of rat prostate testosterone 5α-reductase in the cultured broths of many kinds of soil bacteria, and have found that cultured soybean-casein digest broths of certain bacterial strains have a potent inhibitory effect on the enzyme. We tested 10 selected isoflavonoids, including isoflavones and O-methylated isoflavones, for inhibitory effects on rat prostate testosterone 5α-reductase to determine the important structural elements for inhibition of the enzyme. Genistein, biochanin A, equol, and 3',4',7-trihydroxyisoflavone showed considerably higher inhibitory effects whereas daidzein, formononetin, glycitein, prunetin, ipriflavone, and 4',7-dimethoxyisoflavone showed lower inhibitory effects. The IC(50) values of genistein, biochanin A, equol, 3',4',7-trihydroxyisoflavone, and riboflavin, a positive control, for rat prostate testosterone 5α-reductase were 710 μm, 140 μm, 370 μm, 690 μm, and 17 μm, respectively. Daidzein, genistein, biochanin A, formononetin, and equol are already known to be testosterone 5α-reductase inhibitors, but this is the first characterization of 3',4',7-trihydroxyisoflavone as an inhibitor of the enzyme.
Collapse
Affiliation(s)
- Mijeong Bae
- Department of Herbal Pharmaceutical Engineering, College of Herbal Bio-industry, Daegu Haany University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Lee N, Kim EJ, Kim BG. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680. ACS Chem Biol 2012; 7:1687-92. [PMID: 22769580 DOI: 10.1021/cb300222b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Secreted tyrosinase from melanin-forming Streptomyces avermitilis MA4680 was involved in both ortho-hydroxylation and further oxidation of trans-resveratrol, leading to the formation of melanin. This finding was confirmed by constructing deletion mutants of melC(2) and melD(2) encoding extracellular and intracellular tyrosinase, respectively; the melC2 deletion mutant did not produce piceatannol as well as melanin, whereas the melD2 deletion mutant oxidized resveratrol and synthesized melanin with the same yields, suggesting that MelC2 is responsible for ortho-hydroxylation of resveratrol. Extracellular tyrosinase (MelC2) efficiently converted trans-resveratrol into piceatannol in the presence of either tyrosinase inhibitors or reducing agents such as catechol, NADH, and ascorbic acid. Reducing agents slow down the dioxygenase reaction of tyrosinase. In the presence of catechol, the regio-specific hydroxylation of trans-resveratrol was successfully performed by whole cell biotransformation, and further oxidation of trans-resveratrol was efficiently blocked. The yield of this ortho-hydroxylation of trans-resveratrol was dependent upon inhibitor concentration. Using 1.8 mg of wild-type Streptomyces avermitilis cells, the conversion yield of 100 μM trans-resveratrol to piceatannol was 78% in 3 h in the presence of 1 mM catechol, indicating 14 μM piceatannol h(-1) DCW mg(-1) specific productivity, which was a 14-fold increase in conversion yield compared to that without catechol, which is a remarkably higher reaction rate than that of P450 bioconversion. This method could be generally applied to biocatalysis of various dioxygenases.
Collapse
Affiliation(s)
- Nahum Lee
- School of
Chemical and Biological Engineering, Institute
of Molecular Biology and Genetics, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | - Eun Jung Kim
- School of
Chemical and Biological Engineering, Institute
of Molecular Biology and Genetics, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | - Byung-Gee Kim
- School of
Chemical and Biological Engineering, Institute
of Molecular Biology and Genetics, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
30
|
Choi KY, Jung E, Jung DH, An BR, Pandey BP, Yun H, Sung C, Park HY, Kim BG. Engineering of daidzein 3'-hydroxylase P450 enzyme into catalytically self-sufficient cytochrome P450. Microb Cell Fact 2012; 11:81. [PMID: 22697884 PMCID: PMC3434051 DOI: 10.1186/1475-2859-11-81] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
A cytochrome P450 (CYP) enzyme, 3’-daidzein hydroxylase, CYP105D7 (3’-DH), responsible for daidzein hydroxylation at the 3’-position, was recently reported. CYP105D7 (3’-DH) is a class I type of CYP that requires electrons provided through electron transfer proteins such as ferredoxin and ferredoxin reductase. Presently, we constructed an artificial CYP in order to develop a reaction host for the production of a hydroxylated product. Fusion-mediated construction with the reductase domain from self-sufficient CYP102D1 was done to increase electron transfer efficiency and coupling with the oxidative process. An artificial self-sufficient daidzein hydroxylase (3’-ASDH) displayed distinct spectral properties of both flavoprotein and CYP. The fusion enzyme catalyzed hydroxylation of daidzein more efficiently, with a kcat/Km value of 16.8 μM-1 min-1, which was about 24-fold higher than that of the 3’-DH-camA/B reconstituted enzyme. Finally, a recombinant Streptomyces avermitilis host for the expression of 3’-ASDH and production of the hydroxylated product was developed. The conversion that was attained (34.6%) was 5.2-fold higher than that of the wild-type.
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Monti D, Ottolina G, Carrea G, Riva S. Redox Reactions Catalyzed by Isolated Enzymes. Chem Rev 2011; 111:4111-40. [DOI: 10.1021/cr100334x] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Gianluca Ottolina
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Giacomo Carrea
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
32
|
Screening of bacterial cytochrome P450s responsible for regiospecific hydroxylation of (iso)flavonoids. Enzyme Microb Technol 2011; 48:386-92. [DOI: 10.1016/j.enzmictec.2011.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 11/19/2022]
|
33
|
Choi KY, Park HY, Kim BG. Characterization of bi-functional CYP154 from Nocardia farcinica IFM10152 in the O-dealkylation and ortho-hydroxylation of formononetin. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Pandey BP, Roh C, Choi KY, Lee N, Kim EJ, Ko S, Kim T, Yun H, Kim BG. Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680. Biotechnol Bioeng 2010; 105:697-704. [PMID: 19845003 DOI: 10.1002/bit.22582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Regiospecific 3'-hydroxylation reaction of daidzein was performed with CYP105D7 from Streptomyces avermitilis MA4680 expressed in Escherichia coli. The apparent K(m) and k(cat) values of CYP105D7 for daidzein were 21.83 +/- 6.3 microM and 15.01 +/- 0.6 min(-1) in the presence of 1 microM of CYP105D7, putidaredoxin (CamB) and putidaredoxin reductase (CamA), respectively. When CYP105D7 was expressed in S. avermitilis MA4680, its cytochrome P450 activity was confirmed by the CO-difference spectra at 450 nm using the whole cell extract. When the whole-cell reaction for the 3'-hydroxylation reaction of daidzein was carried out with 100 microM of daidzein in 100 mM of phosphate buffer (pH 7.5), the recombinant S. avermitilis grown in R2YE media overexpressing CYP105D7 and ferredoxin FdxH (SAV7470) showed a 3.6-fold higher conversion yield (24%) than the corresponding wild type cell (6.7%). In a 7 L (working volume 3 L) jar fermentor, the recombinants S. avermitilis grown in R2YE media produced 112.5 mg of 7,3',4'-trihydroxyisoflavone (i.e., 29.5% conversion yield) from 381 mg of daidzein in 15 h.
Collapse
Affiliation(s)
- Bishnu Prasad Pandey
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, Institute of Bioengineering, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Choi KY, Kim TJ, Koh SK, Roh CH, Pandey BP, Lee N, Kim BG. A-ringortho-specific monohydroxylation of daidzein by cytochrome P450s ofNocardia farcinicaIFM10152. Biotechnol J 2009; 4:1586-95. [DOI: 10.1002/biot.200900157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|