1
|
Selenge T, Vieira SF, Gendaram O, Reis RL, Tsolmon S, Tsendeekhuu E, Ferreira H, Neves NM. Antioxidant and Anti-Inflammatory Activities of Stellera chamaejasme L. Roots and Aerial Parts Extracts. Life (Basel) 2023; 13:1654. [PMID: 37629511 PMCID: PMC10456005 DOI: 10.3390/life13081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products, mainly plants, have a crucial role in folk medicine. Particularly, Stellera chamaejasme L. has been traditionally used in Mongolian medicine to treat various diseases, including chronic tracheitis, tuberculosis, and psoriasis. In this study, ethanol (EtOH) and dichloromethane (DCM) extracts of its roots (R) and aerial parts (AP) were evaluated for their antioxidant and anti-inflammatory activities. Thin-layer chromatography demonstrated the presence of flavonoids, namely kaempferol and quercetin-3-O-glucopyranoside, only in the EtOH-AP. Conversely, it showed that kaempferol, quercetin-3-O-glucopyranoside, coumarin, luteolin, rutin, morin, and riboflavin were not present in the other three extracts. The S. chamaejasme extracts exhibited strong antioxidant activity. In addition, the roots extracts presented the highest antioxidant activity against peroxyl radicals, with the EtOH-R being the most potent (IC50 = 0.90 ± 0.07 µg/mL). S. chamaejasme extracts also efficiently inhibited the production of one of the main pro-inflammatory cytokines, interleukin (IL)-6, in a dose-dependent manner by lipopolysaccharide-stimulated macrophages. Particularly, DCM-R was the strongest extract, reducing ≈ 91.5% of the IL-6 production. Since this extract was the most effective, gas chromatography-mass spectrometry (GC-MS) analyses were performed and demonstrated the presence of two fatty acids (palmitic acid and 9-octadecenoic acid), one fatty alcohol (1-hexadecanol), and one triterpenoid (squalene) that can contribute to the observed bioactivity. Herewith, S. chamaejasme extracts, mainly DCM-R, exhibit antioxidant and anti-inflammatory activities that could be applied as new and innovative natural formulations for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Temuulen Selenge
- Department of Biotechnology and Nutrition, School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia; (T.S.); (E.T.)
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara F. Vieira
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Odontuya Gendaram
- Department of Pharmaceutical Chemistry and Pharmacognosy, Mongolian University of Pharmaceutical Sciences, Sonsgolon’s Road 4/A Songinokhairkhan District 20th Khoroo, Ulaanbaatar 46520, Mongolia;
| | - Rui L. Reis
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Soninkhishig Tsolmon
- Tana Lab, Graduate School of Business, Mongolian University of Science and Technology, Sukhbaatar District, Ulaanbaatar 14191, Mongolia;
| | - Enkhtuul Tsendeekhuu
- Department of Biotechnology and Nutrition, School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia; (T.S.); (E.T.)
| | - Helena Ferreira
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Abstract
The present review describes 108 new examples of naturally occurring flavans and
flavanones having cytotoxic potential, which have been reported during the period of 2005 to
mid-2020. These compounds are found either as aglycones or as glycosides, comprising
flavans, flavanones, isoflavanones and miscellaneous flavanones (homo- and bi-flavanones).
The main topics addressed in this review are source, structure, and cytotoxic activity in detail
and the structure-activity relationship.
Collapse
Affiliation(s)
- Arindam Gangopadhyay
- Department of Chemistry, Rampurhat College, Rampurhat, Birbhum, West Bengal, India
| |
Collapse
|
3
|
Phenolic composition of some Tunisian medicinal plants associated with anti-proliferative effect on human breast cancer MCF-7 cells. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Plants have been seen to possess the potential to be excellent biological matrices to serve as a basis for investigating the presence of promising therapeutic agents for cancer treatment. Several successful anti-cancer medicines - or their analogues - nowadays in use are plant derived and many more are under clinical trials. Under current circumstances, the purpose of this work was to test aqueous and ethanolic extracts of five aromatic and medicinal plants from arid zones on some tumor cell lines. These plants, Cymbopogon schoenanthus (L.) Spreng, Crithmum maritimum (L.) Spreng, Hammada scoparia (Pomel) Iljin, Retama raetam (Forssk.) and Zizyphus lotus (L.) Desf., widely used in Tunisian ethnomedicine, were assessed for their phenolic compounds, antioxidants and anticancer activities in aqueous and ethanol extracts. Total polyphenols, flavonoid and tannin contents were determined colorimetrically and some of these molecules were identified using RP-HPLC. A significant difference on phenolic contents and composition were found among the investigated plants. Cymbopogon schoenanthus was the richest in phenolic compounds (approx. 72%) with quercetine-3-o-rhamnoside (approx. 33%) as main contributor. For all the tested plants, the highest antioxidant capacity was detected in the ethanolic extracts rather than in the aqueous ones. The highest antiproliferative potential was observed for the ethanolic extracts. Hammada scoparia, Retama raetam and Zizyphus lotus exhibited important antiproliferative effect that reached 67% at a 1% extract concentration. Taken together, the present study supports the potential development of chemotherapeutic agents from, at least, four of the five studied Tunisian ethnomedicinal plants.
Collapse
|
4
|
Ren Y, Mu Y, Yue Y, Jin H, Tao K, Hou T. Neochamaejasmin A extracted from Stellera chamaejasme L. induces apoptosis involving mitochondrial dysfunction and oxidative stress in Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:169-177. [PMID: 31153465 DOI: 10.1016/j.pestbp.2019.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin A (NCA), extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity on the Spodoptera frugiperda (Sf9) cell line. The results confirmed that NCA inhibited Sf9 cell survival in both a dose- and time-dependent manner. Then, intracellular biochemical assays showed that NCA induced apoptosis in Sf9 cells. Evidence of apoptosis was confirmed by morphological changes and the activation of caspases-3/9. We also observed that NCA induced apoptosis via mitochondrial-dependent intrinsic apoptotic pathway by upregulating cytochrome c and proapoptotic protein (Bax) and downregulating the mitochondrial membrane potential (MMP) and antiapoptotic protein (Bcl-2). Moreover, we found a dose-dependent increase in reactive oxygen species (ROS), accumulation of lipid peroxidation product and an inactivation of the antioxidant enzymes in treated cells. Additionally, the cleavage of PARP and G2/M arrest were also detected in Sf9 cells exposed to NCA. These findings provide critical information that NCA effectively induced apoptosis in Sf9 cells through mitochondrial pathways.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yangping Mu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Yue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
5
|
The Ethyl Acetate Extract of Gynura formosana Kitam. Leaves Inhibited Cervical Cancer Cell Proliferation via Induction of Autophagy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4780612. [PMID: 29992145 PMCID: PMC5994325 DOI: 10.1155/2018/4780612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 11/22/2022]
Abstract
Gynura formosana Kitam. belongs to the Compositae family and has been traditionally used for the prevention of cancer, diabetes, and inflammation in China. Previous studies had indicated that the ethyl acetate extract of Gynura formosana Kitam. leaves (EAEG) exhibited antioxidant and anti-inflammatory activity. In this report, we demonstrated that EAEG possessed potent anticancer activity through autophagy-mediated inhibition of cell proliferation. EAEG induced a strong cytostatic effect towards HeLa cells and, to a lesser extent, HepG2 and MCF-7 cells. This cytostatic effect of EAEG was not a consequence of increased apoptosis, as neither DNA fragmentation nor change in protein expression level for a number of apoptosis-related genes including Bid, Bax, Bcl-2, and caspase-3 was observed after EAEG treatment, and the apoptosis inhibitor Z-VAD-FMK did not inhibit the EAEG-elicited cytostatic effect. On the other hand, EAEG induced autophagy in a dose-dependent fashion, as shown by increased GFP puncta formation, enhanced conversion of the microtubule-associated protein light chain LC3-I to LC3-II, and downregulation of the p62 protein. Treating the HeLa cells with EAEG together with Chloroquine (CQ) further accelerated LC3 conversion and p62 clearance, indicating that EAEG induced complete autophagy flux. Importantly, the autophagy inhibitor 3-methyladenine (3MA) significantly abrogated the cytostatic effect of EAEG, strongly suggesting that EAEG inhibited HeLa cell proliferation through the induction of autophagy rather than apoptosis. Our results provided a novel and interesting mechanistic insight into the anticancer action of EAEG, supporting the traditional use of this plant for the treatment of the cancer.
Collapse
|
6
|
Zhang Y, Liu C, Qi Y, Li Y, Li S, Wang Y, Ren J, Tang Y. Efficient combination of circulating ultrasound-assisted extraction and centrifugal partition chromatography for extraction and on-line separation of chemical constituents from Stellera chamaejasme L. PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:301-309. [PMID: 25904347 DOI: 10.1002/pca.2564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Sample preparation is a crucial step in medicinal herb analysis because the desired chemical components need to be extracted from the herbal materials for further separation and characterisation. Thus, the development of " modern" sample preparation techniques with significant advantages over conventional methods is very important. OBJECTIVE The aim of this study was the development of a new preparation method using circulating ultrasonic-assisted extraction (CUAE) coupled with centrifugal partition chromatography (CPC) for continuous extraction and on-line isolation of chemical constituents from Stellera chamaejasme L. METHODOLOGY The stationary or mobile phase was used as the extraction solvent. Extraction parameters, including the ultrasound power, extraction time, temperature, and liquid:solid ratio, were optimised using a response surface methodology. RESULTS The extraction time, temperature, and power considerably affected the extraction yield. The optimised extraction parameters were an ultrasound power of 800 W, extraction time of 30 min, extraction temperature of 70 °C, and liquid:solid ratio of 8 mL/g. The solvent system for CUAE and CPC was optimised using mathematical equations, and the two-phase solvent system of n-hexane:ethyl acetate:methanol:water at a volume ratio of 3:5:4:6 was calculated. Four target compounds (daphnoretin, chamaechromone, neochamaejasmin A, and isochamaejasmin) with purities above 96% were successfully extracted and isolated on-line via CUAE/CPC. CONCLUSION Compared with the reference extraction methods, the instrumental setup achieved a scientific and systematic extraction and isolation of natural products and has great potential for industrial application.
Collapse
Affiliation(s)
- Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Yanjuan Qi
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Yuchun Li
- Traditional Chinese Medicine Academy of Science of Jilin Province, No. 1745 Gongnong Road, Chaoyang District, Changchun, 130021, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Yuqi Wang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Junqi Ren
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Ying Tang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| |
Collapse
|
7
|
Wang ZX, Cheng MC, Zhang XZ, Hong ZL, Gao MZ, Kan XX, Li Q, Wang YJ, Zhu XX, Xiao HB. Cytotoxic biflavones from Stellera chamaejasme. Fitoterapia 2014; 99:334-40. [DOI: 10.1016/j.fitote.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
|
8
|
In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:529375. [PMID: 24348703 PMCID: PMC3856152 DOI: 10.1155/2013/529375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/17/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022]
Abstract
This study aimed to determinate phenolic contents and antioxidant activities of the halophyte Arthrocnemum indicum shoot extracts. Moreover, the anticancer effect of this plant on human colon cancer cells and the likely underlying mechanisms were also investigated, and the major phenols were identified by LC-ESI-TOF-MS. Results showed that shoot extracts had an antiproliferative effect of about 55% as compared to the control and were characterised by substantial total polyphenol content (19 mg GAE/g DW) and high antioxidant activity (IC50 = 40 μ g/mL for DPPH test). DAPI staining revealed that these extracts decrease DNA synthesis and reduce the proliferation of Caco-2 cells which were stopped at the G2/M phase. The changes in the cell-cycle-associated proteins (cyclin B1, p38, Erk1/2, Chk1, and Chk2) correlate with the changes in cell cycle distribution. Eight phenolic compounds were also identified. In conclusion, A. indicum showed interesting antioxidant capacities associated with a significant antiproliferative effect explained by a cell cycle blocking at the G2/M phase. Taken together, these data suggest that A. indicum could be a promising candidate species as a source of anticancer molecules.
Collapse
|