1
|
Helleckes LM, Küsters K, Wagner C, Hamel R, Saborowski R, Marienhagen J, Wiechert W, Oldiges M. "High-throughput screening of catalytically active inclusion bodies using laboratory automation and Bayesian optimization". Microb Cell Fact 2024; 23:67. [PMID: 38402403 PMCID: PMC10894497 DOI: 10.1186/s12934-024-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/27/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND In recent years, the production of inclusion bodies that retain substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) are formed by genetic fusion of an aggregation-inducing tag to a gene of interest via short linker polypeptides. The resulting CatIBs are known for their easy and cost-efficient production, recyclability as well as their improved stability. Recent studies have outlined the cooperative effects of linker and aggregation-inducing tag on CatIB activities. However, no a priori prediction is possible so far to indicate the best combination thereof. Consequently, extensive screening is required to find the best performing CatIB variant. RESULTS In this work, a semi-automated cloning workflow was implemented and used for fast generation of 63 CatIB variants with glucose dehydrogenase of Bacillus subtilis (BsGDH). Furthermore, the variant BsGDH-PT-CBDCell was used to develop, optimize and validate an automated CatIB screening workflow, enhancing the analysis of many CatIB candidates in parallel. Compared to previous studies with CatIBs, important optimization steps include the exclusion of plate position effects in the BioLector by changing the cultivation temperature. For the overall workflow including strain construction, the manual workload could be reduced from 59 to 7 h for 48 variants (88%). After demonstration of high reproducibility with 1.9% relative standard deviation across 42 biological replicates, the workflow was performed in combination with a Bayesian process model and Thompson sampling. While the process model is crucial to derive key performance indicators of CatIBs, Thompson sampling serves as a strategy to balance exploitation and exploration in screening procedures. Our methodology allowed analysis of 63 BsGDH-CatIB variants within only three batch experiments. Because of the high likelihood of TDoT-PT-BsGDH being the best CatIB performer, it was selected in 50 biological replicates during the three screening rounds, much more than other, low-performing variants. CONCLUSIONS At the current state of knowledge, every new enzyme requires screening for different linker/aggregation-inducing tag combinations. For this purpose, the presented CatIB toolbox facilitates fast and simplified construction and screening procedures. The methodology thus assists in finding the best CatIB producer from large libraries in short time, rendering possible automated Design-Build-Test-Learn cycles to generate structure/function learnings.
Collapse
Affiliation(s)
- Laura Marie Helleckes
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Kira Küsters
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Christian Wagner
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Rebecca Hamel
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Ronja Saborowski
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52074, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Küsters K, Saborowski R, Wagner C, Hamel R, Spöring JD, Wiechert W, Oldiges M. Construction and characterization of BsGDH-CatIB variants and application as robust and highly active redox cofactor regeneration module for biocatalysis. Microb Cell Fact 2022; 21:108. [PMID: 35655182 PMCID: PMC9161568 DOI: 10.1186/s12934-022-01816-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catalytically active inclusion bodies (CatIBs) are known for their easy and cost efficient production, recyclability as well as high stability and provide an alternative purely biological technology for enzyme immobilization. Due to their ability to self-aggregate in a carrier-free, biodegradable form, no further laborious immobilization steps or additional reagents are needed. These advantages put CatIBs in a beneficial position in comparison to traditional immobilization techniques. Recent studies outlined the impact of cooperative effects of the linker and aggregation inducing tag on the activity level of CatIBs, requiring to test many combinations to find the best performing CatIB variant. RESULTS Here, we present the formation of 14 glucose dehydrogenase CatIB variants of Bacillus subtilis, a well-known enzyme in biocatalysis due to its capability for substrate coupled regeneration of reduced cofactors with cheap substrate glucose. Nine variants revealed activity, with highest productivity levels for the more rigid PT-Linker combinations. The best performing CatIB, BsGDH-PT-CBDCell, was characterized in more detail including long-term storage at -20 °C as well as NADH cofactor regeneration performance in repetitive batch experiments with CatIB recycling. After freezing, BsGDH-PT-CBDCell CatIB only lost approx. 10% activity after 8 weeks of storage. Moreover, after 11 CatIB recycling cycles in repetitive batch operation 80% of the activity was still present. CONCLUSIONS This work presents a method for the effective formation of a highly active and long-term stable BsGDH-CatIB as an immobilized enzyme for robust and convenient NADH regeneration.
Collapse
Affiliation(s)
- Kira Küsters
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Ronja Saborowski
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christian Wagner
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Rebecca Hamel
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan-Dirk Spöring
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52074, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Küsters K, Pohl M, Krauss U, Ölçücü G, Albert S, Jaeger KE, Wiechert W, Oldiges M. Construction and comprehensive characterization of an EcLDCc-CatIB set-varying linkers and aggregation inducing tags. Microb Cell Fact 2021; 20:49. [PMID: 33596923 PMCID: PMC7891155 DOI: 10.1186/s12934-021-01539-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background
In recent years, the production of inclusion bodies that retained substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) were formed by genetic fusion of an aggregation inducing tag to a gene of interest via short linker polypeptides and overproduction of the resulting gene fusion in Escherichia coli. The resulting CatIBs are known for their high stability, easy and cost efficient production, and recyclability and thus provide an interesting alternative to conventionally immobilized enzymes. Results Here, we present the construction and characterization of a CatIB set of the lysine decarboxylase from Escherichia coli (EcLDCc), constructed via Golden Gate Assembly. A total of ten EcLDCc variants consisting of combinations of two linker and five aggregation inducing tag sequences were generated. A flexible Serine/Glycine (SG)- as well as a rigid Proline/Threonine (PT)-Linker were tested in combination with the artificial peptides (18AWT, L6KD and GFIL8) or the coiled-coil domains (TDoT and 3HAMP) as aggregation inducing tags. The linkers were fused to the C-terminus of the EcLDCc to form a linkage between the enzyme and the aggregation inducing tags. Comprehensive morphology and enzymatic activity analyses were performed for the ten EcLDCc-CatIB variants and a wild type EcLDCc control to identify the CatIB variant with the highest activity for the decarboxylation of l-lysine to 1,5-diaminopentane. Interestingly, all of the CatIB variants possessed at least some activity, whilst most of the combinations with the rigid PT-Linker showed the highest conversion rates. EcLDCc-PT-L6KD was identified as the best of all variants allowing a volumetric productivity of 457 g L− 1 d− 1 and a specific volumetric productivity of 256 g L− 1 d− 1 gCatIB−1. Noteworthy, wild type EcLDCc, without specific aggregation inducing tags, also partially formed CatIBs, which, however showed lower activity compared to most of the newly constructed CatIB variants (volumetric productivity: 219 g L− 1 d− 1, specific volumetric activity: 106 g L− 1 d− 1 gCatIB− 1). Furthermore, we demonstrate that microscopic analysis can serve as a tool to find CatIB producing strains and thus allow for prescreening at an early stage to save time and resources. Conclusions Our results clearly show that the choice of linker and aggregation inducing tag has a strong influence on the morphology and the enzymatic activity of the CatIBs. Strikingly, the linker had the most pronounced influence on these characteristics.
Collapse
Affiliation(s)
- Kira Küsters
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Martina Pohl
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ulrich Krauss
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Gizem Ölçücü
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Sandor Albert
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Faculty of Biotechnology, University of Applied Sciences Mannheim, 68163, Mannheim, Germany
| | - Karl-Erich Jaeger
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52074, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
4
|
An external substrate-free blue/white screening system in Escherichia coli. Appl Microbiol Biotechnol 2017; 101:3811-3820. [PMID: 28352998 DOI: 10.1007/s00253-017-8252-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023]
Abstract
Since the lacZα-based blue/white screening system was introduced to molecular biology, several different visual reporter systems were developed and used for various purposes in Escherichia coli. A common limit to the existent visual reporter systems is that an extracellular chromogenic substrate has to be added for the visible pigment production. In this study, we developed a new blue/white screening system based on a non-ribosomal peptide synthetase encoded by idgS from Streptomyces and a phosphopantetheinyl transferase encoded by sfp from Bacillus. When IdgS is activated from an apo-form to a holo-form via a posttranslational modification catalyzed by Sfp, it can synthesize a blue pigment indigoidine using L-glutamine, the amino acid abundant in cells, as a substrate. The new blue/white screening system contains a recipient E. coli strain with an optimized idgS gene cassette and a cloning vector harboring an sfp gene with an in-frame insertion of a multiple cloning site close to its N-terminal. We demonstrated that the IdgS/Sfp-based blue/white screening system is a powerful alternative to the lacZα-based screening system, which does not require any external substrate addition.
Collapse
|
5
|
Spidel JL, Vaessen B, Chan YY, Grasso L, Kline JB. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells. J Immunol Methods 2016; 439:50-58. [PMID: 27677581 DOI: 10.1016/j.jim.2016.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 02/02/2023]
Abstract
Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks.
Collapse
Affiliation(s)
| | | | - Yin Yin Chan
- Morphotek Inc., 210 Welsh Pool Road, Exton, PA, USA
| | - Luigi Grasso
- Morphotek Inc., 210 Welsh Pool Road, Exton, PA, USA
| | | |
Collapse
|
6
|
Tsukuda M, Nakashima N, Miyazaki K. Counterselection method based on conditional silencing of antitoxin genes in Escherichia coli. J Biosci Bioeng 2015; 120:591-5. [DOI: 10.1016/j.jbiosc.2015.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 01/29/2023]
|
7
|
Uchiyama T, Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Front Microbiol 2015; 6:548. [PMID: 26136726 PMCID: PMC4468940 DOI: 10.3389/fmicb.2015.00548] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/19/2015] [Indexed: 11/13/2022] Open
Abstract
β-glucosidases (BGLs) hydrolyze cello-oligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (∼mM) concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (∼10,000 colonies) and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue) colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v) glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa) and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7) was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0-6.5 and retained full or 1.5-2-fold enhanced activity in the presence of 0.1-0.5 M glucose. It had a low KM (78 μM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose) and high V max (91 μmol min(-1) mg(-1) with p-nitrophenyl β-D-glucoside; 155 μmol min(-1) mg(-1) with cellobiose) among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose) inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.
Collapse
Affiliation(s)
- Taku Uchiyama
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Katusro Yaoi
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Kentaro Miyazaki
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen Groningen, Netherlands ; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Japan
| |
Collapse
|
8
|
Knockin’ on pHeaven’s Door: A Fast and Reliable High-Throughput Compatible Zero-Background Cloning Procedure. Mol Biotechnol 2014; 56:449-58. [DOI: 10.1007/s12033-014-9736-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|